mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
342 lines
13 KiB
Python
342 lines
13 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
from ..functional import (ACT2FN, Tensor, chunk, group_norm, layer_norm,
|
|
rms_norm, unsqueeze)
|
|
from ..mapping import Mapping
|
|
from ..module import Module
|
|
from ..parameter import Parameter
|
|
from .embedding import CombinedTimestepLabelEmbeddings, Embedding
|
|
from .linear import Linear
|
|
|
|
|
|
class LayerNorm(Module):
|
|
|
|
def __init__(self,
|
|
normalized_shape,
|
|
eps=1e-05,
|
|
elementwise_affine=True,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_size=1,
|
|
tp_dim=-1):
|
|
super().__init__()
|
|
if isinstance(normalized_shape, int):
|
|
normalized_shape = (normalized_shape, )
|
|
self.normalized_shape = tuple(normalized_shape)
|
|
self.elementwise_affine = elementwise_affine
|
|
if self.elementwise_affine:
|
|
self.weight = Parameter(shape=self.normalized_shape, dtype=dtype)
|
|
if bias:
|
|
self.bias = Parameter(shape=self.normalized_shape, dtype=dtype)
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
self.register_parameter('bias', None)
|
|
|
|
self.eps = eps
|
|
self.dtype = dtype
|
|
self.tp_size = tp_size
|
|
self.tp_dim = tp_dim
|
|
|
|
def forward(self, x, normalized_shape=None):
|
|
weight = 1. if self.weight is None else self.weight.value
|
|
bias = 0. if self.bias is None else self.bias.value
|
|
if normalized_shape is None:
|
|
normalized_shape = self.normalized_shape
|
|
return layer_norm(x, normalized_shape, weight, bias, self.eps)
|
|
|
|
|
|
class RmsNorm(Module):
|
|
|
|
def __init__(self,
|
|
normalized_shape,
|
|
num_groups=1,
|
|
eps=1e-06,
|
|
elementwise_affine=True,
|
|
dtype=None):
|
|
super().__init__()
|
|
if isinstance(normalized_shape, int):
|
|
normalized_shape = (normalized_shape, )
|
|
self.normalized_shape = tuple(normalized_shape)
|
|
self.elementwise_affine = elementwise_affine
|
|
self.num_groups = num_groups
|
|
num_channels = normalized_shape[-1]
|
|
if num_channels % num_groups != 0:
|
|
raise ValueError('num_channels must be divisible by num_groups')
|
|
if self.elementwise_affine:
|
|
self.weight = Parameter(shape=self.normalized_shape, dtype=dtype)
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
|
|
self.eps = eps
|
|
self.dtype = dtype
|
|
|
|
def forward(self, x, normalized_shape=None):
|
|
weight = None if self.weight is None else self.weight.value
|
|
if normalized_shape is None:
|
|
normalized_shape = self.normalized_shape
|
|
return rms_norm(x, normalized_shape, self.num_groups, weight, self.eps)
|
|
|
|
|
|
class GroupNorm(Module):
|
|
|
|
def __init__(self,
|
|
num_groups,
|
|
num_channels,
|
|
eps=1e-05,
|
|
affine=True,
|
|
dtype=None):
|
|
super().__init__()
|
|
|
|
if num_channels % num_groups != 0:
|
|
raise ValueError('num_channels must be divisible by num_groups')
|
|
|
|
self.num_groups = num_groups
|
|
self.num_channels = num_channels
|
|
self.affine = affine
|
|
|
|
if self.affine:
|
|
self.weight = Parameter(shape=(self.num_channels, ), dtype=dtype)
|
|
self.bias = Parameter(shape=(self.num_channels, ), dtype=dtype)
|
|
else:
|
|
self.register_parameter('weight', None)
|
|
self.register_parameter('bias', None)
|
|
|
|
self.eps = eps
|
|
|
|
def forward(self, x):
|
|
weight = None if self.weight is None else self.weight.value
|
|
bias = None if self.bias is None else self.bias.value
|
|
return group_norm(x, self.num_groups, weight, bias, self.eps)
|
|
|
|
|
|
class AdaLayerNorm(Module):
|
|
|
|
def __init__(self,
|
|
embedding_dim: int,
|
|
num_embeddings: Optional[int] = None,
|
|
output_dim: Optional[int] = None,
|
|
norm_elementwise_affine: bool = False,
|
|
norm_eps: float = 1e-5,
|
|
chunk_dim: int = 0,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
self.chunk_dim = chunk_dim
|
|
output_dim = output_dim or embedding_dim * 2
|
|
if num_embeddings is not None:
|
|
self.emb = Embedding(num_embeddings, embedding_dim, dtype=dtype)
|
|
else:
|
|
self.emb = None
|
|
self.silu = ACT2FN['silu']
|
|
self.linear = Linear(embedding_dim,
|
|
output_dim,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
dtype=dtype)
|
|
self.norm = LayerNorm(output_dim // 2,
|
|
eps=norm_eps,
|
|
elementwise_affine=norm_elementwise_affine,
|
|
dtype=dtype)
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
timestep: Optional[Tensor] = None,
|
|
temb: Optional[Tensor] = None):
|
|
assert timestep is not None or temb is not None
|
|
if self.emb is not None and timestep is not None:
|
|
temb = self.emb(timestep)
|
|
temb = self.linear(self.silu(temb))
|
|
if self.chunk_dim == 1:
|
|
shift, scale = chunk(temb, 2, dim=1)
|
|
shift = unsqueeze(shift, 1)
|
|
scale = unsqueeze(scale, 1)
|
|
else:
|
|
scale, shift = chunk(temb, 2, dim=0)
|
|
x = self.norm(x) * (1 + scale) + shift
|
|
return x
|
|
|
|
|
|
class AdaLayerNormZero(Module):
|
|
|
|
def __init__(self,
|
|
embedding_dim: int,
|
|
num_embeddings: Optional[int] = None,
|
|
norm_type: str = "layer_norm",
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
if num_embeddings is not None:
|
|
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings,
|
|
embedding_dim,
|
|
dtype=dtype)
|
|
else:
|
|
self.emb = None
|
|
|
|
self.silu = ACT2FN['silu']
|
|
self.linear = Linear(embedding_dim,
|
|
6 * embedding_dim,
|
|
bias=bias,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
dtype=dtype)
|
|
if norm_type == "layer_norm":
|
|
self.norm = LayerNorm(embedding_dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
dtype=dtype)
|
|
elif norm_type == "fp32_layer_norm":
|
|
self.norm = LayerNorm(embedding_dim,
|
|
elementwise_affine=False,
|
|
bias=False,
|
|
dtype=dtype)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
|
)
|
|
|
|
def forward(self,
|
|
x: Tensor,
|
|
timestep: Optional[Tensor] = None,
|
|
class_labels: Optional[Tensor] = None,
|
|
hidden_dtype: str = None,
|
|
emb: Optional[Tensor] = None):
|
|
assert emb is not None or self.emb is not None
|
|
if self.emb is not None:
|
|
emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
|
|
emb = self.linear(self.silu(emb))
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = chunk(
|
|
emb, 6, dim=1)
|
|
x = self.norm(x) * (1 + unsqueeze(scale_msa, 1)) + unsqueeze(
|
|
shift_msa, 1)
|
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
|
|
|
|
|
class AdaLayerNormZeroSingle(Module):
|
|
|
|
def __init__(self,
|
|
embedding_dim: int,
|
|
norm_type: str = "layer_norm",
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
|
|
self.silu = ACT2FN['silu']
|
|
self.linear = Linear(embedding_dim,
|
|
3 * embedding_dim,
|
|
bias=bias,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
dtype=dtype)
|
|
if norm_type == "layer_norm":
|
|
self.norm = LayerNorm(embedding_dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
|
)
|
|
|
|
def forward(self, x: Tensor, emb: Optional[Tensor] = None):
|
|
emb = self.linear(self.silu(emb))
|
|
shift_msa, scale_msa, gate_msa = chunk(emb, 3, dim=1)
|
|
x = self.norm(x) * (1 + unsqueeze(scale_msa, 1)) + unsqueeze(
|
|
shift_msa, 1)
|
|
return x, gate_msa
|
|
|
|
|
|
class AdaLayerNormContinuous(Module):
|
|
|
|
def __init__(self,
|
|
embedding_dim: int,
|
|
conditioning_embedding_dim: int,
|
|
elementwise_affine: bool = True,
|
|
eps: float = 1e-5,
|
|
bias: bool = True,
|
|
norm_type: str = "layer_norm",
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
self.silu = ACT2FN['silu']
|
|
self.linear = Linear(conditioning_embedding_dim,
|
|
embedding_dim * 2,
|
|
bias=bias,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
dtype=dtype)
|
|
if norm_type == "layer_norm":
|
|
self.norm = LayerNorm(embedding_dim,
|
|
eps=eps,
|
|
elementwise_affine=elementwise_affine,
|
|
bias=bias,
|
|
dtype=dtype)
|
|
elif norm_type == "rms_norm":
|
|
self.norm = RmsNorm(embedding_dim,
|
|
eps=eps,
|
|
elementwise_affine=elementwise_affine,
|
|
dtype=dtype)
|
|
else:
|
|
raise ValueError(f"unknown norm_type {norm_type}")
|
|
|
|
def forward(self, x: Tensor, conditioning_embedding: Tensor):
|
|
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
|
emb = self.linear(self.silu(conditioning_embedding).cast(x.dtype))
|
|
scale, shift = chunk(emb, 2, dim=1)
|
|
x = self.norm(x) * unsqueeze((1 + scale), 1) + unsqueeze(shift, 1)
|
|
return x
|
|
|
|
|
|
class SD35AdaLayerNormZeroX(Module):
|
|
|
|
def __init__(self,
|
|
embedding_dim: int,
|
|
norm_type: str = "layer_norm",
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
self.silu = ACT2FN['silu']
|
|
self.linear = Linear(embedding_dim,
|
|
9 * embedding_dim,
|
|
bias=bias,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
dtype=dtype)
|
|
if norm_type == "layer_norm":
|
|
self.norm = LayerNorm(embedding_dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
dtype=dtype)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm'."
|
|
)
|
|
|
|
def forward(self, hidden_states: Tensor, emb: Tensor):
|
|
emb = self.linear(self.silu(emb).cast(hidden_states.dtype))
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_msa2, scale_msa2, gate_msa2 = chunk(
|
|
emb, 9, dim=1)
|
|
norm_hidden_states = self.norm(hidden_states)
|
|
hidden_states = norm_hidden_states * (
|
|
1 + unsqueeze(scale_msa, 1)) + unsqueeze(shift_msa, 1)
|
|
norm_hidden_states2 = norm_hidden_states * (
|
|
1 + unsqueeze(scale_msa2, 1)) + unsqueeze(shift_msa2, 1)
|
|
return hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2
|