TensorRT-LLMs/tensorrt_llm/llmapi/tracing.py
zhanghaotong 1026069a2b
[None][feat] Add opentelemetry tracing (#5897)
Signed-off-by: Zhang Haotong <zhanghaotong.zht@antgroup.com>
Signed-off-by: zhanghaotong <zhanghaotong.zht@antgroup.com>
Signed-off-by: Shunkang <182541032+Shunkangz@users.noreply.github.co>
Co-authored-by: Zhang Haotong <zhanghaotong.zht@alibaba-inc.com>
Co-authored-by: Shunkang <182541032+Shunkangz@users.noreply.github.co>
2025-10-27 18:51:07 +08:00

228 lines
7.5 KiB
Python

# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
__all__ = [
'SpanAttributes', 'SpanKind', 'contains_trace_headers',
'extract_trace_context', 'get_span_exporter', 'global_otlp_tracer',
'init_tracer', 'insufficient_request_metrics_warning', 'is_otel_available',
'is_tracing_enabled', 'log_tracing_disabled_warning',
'set_global_otlp_tracer', 'extract_trace_headers'
]
import functools
import os
import typing
from collections.abc import Mapping
from typing import Optional
from strenum import StrEnum
from tensorrt_llm._utils import run_once
from tensorrt_llm.logger import logger
# Adapted from https://github.com/vllm-project/vllm/blob/v0.10.0rc1/vllm/tracing.py#L11
TRACE_HEADERS = ["traceparent", "tracestate"]
_global_tracer_ = None
_is_otel_imported = False
otel_import_error_traceback: Optional[str] = None
try:
from opentelemetry.context.context import Context
from opentelemetry.sdk.environment_variables import \
OTEL_EXPORTER_OTLP_TRACES_PROTOCOL
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.trace import (SpanKind, Status, StatusCode, Tracer,
get_current_span, set_tracer_provider)
from opentelemetry.trace.propagation.tracecontext import \
TraceContextTextMapPropagator
_is_otel_imported = True
except ImportError:
import traceback
otel_import_error_traceback = traceback.format_exc()
class Context: # type: ignore
pass
class BaseSpanAttributes: # type: ignore
pass
class SpanKind: # type: ignore
pass
class Tracer: # type: ignore
pass
def is_otel_available() -> bool:
return _is_otel_imported
def init_tracer(instrumenting_module_name: str,
otlp_traces_endpoint: str) -> Optional[Tracer]:
if not is_otel_available():
raise ValueError(
"OpenTelemetry is not available. Unable to initialize "
"a tracer. Ensure OpenTelemetry packages are installed. "
f"Original error:\n{otel_import_error_traceback}")
trace_provider = TracerProvider()
span_exporter = get_span_exporter(otlp_traces_endpoint)
trace_provider.add_span_processor(BatchSpanProcessor(span_exporter))
set_tracer_provider(trace_provider)
tracer = trace_provider.get_tracer(instrumenting_module_name)
set_global_otlp_tracer(tracer)
return tracer
def get_span_exporter(endpoint):
protocol = os.environ.get(OTEL_EXPORTER_OTLP_TRACES_PROTOCOL, "grpc")
if protocol == "grpc":
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import \
OTLPSpanExporter
elif protocol == "http/protobuf":
from opentelemetry.exporter.otlp.proto.http.trace_exporter import \
OTLPSpanExporter # type: ignore
else:
raise ValueError(
f"Unsupported OTLP protocol '{protocol}' is configured")
return OTLPSpanExporter(endpoint=endpoint)
def extract_trace_context(
headers: Optional[Mapping[str, str]]) -> Optional[Context]:
if is_otel_available():
headers = headers or {}
return TraceContextTextMapPropagator().extract(headers)
else:
return None
def extract_trace_headers(
headers: Mapping[str, str]) -> Optional[Mapping[str, str]]:
if is_tracing_enabled():
# Return only recognized trace headers with normalized lowercase keys
lower_map = {k.lower(): v for k, v in headers.items()}
return {h: lower_map[h] for h in TRACE_HEADERS if h in lower_map}
if contains_trace_headers(headers):
log_tracing_disabled_warning()
return None
def inject_trace_headers(headers: Mapping[str, str]) -> Mapping[str, str]:
if is_tracing_enabled():
trace_headers = extract_trace_headers(headers) if not headers else {}
TraceContextTextMapPropagator().inject(trace_headers)
return trace_headers
return None
def global_otlp_tracer() -> Tracer:
"""Get the global OTLP instance in the current process."""
return _global_tracer_
def set_global_otlp_tracer(tracer: Tracer):
"""Set the global OTLP Tracer instance in the current process."""
global _global_tracer_
assert _global_tracer_ is None
_global_tracer_ = tracer
def is_tracing_enabled() -> bool:
return _global_tracer_ is not None
class SpanAttributes(StrEnum):
"""Span attributes for LLM tracing following GenAI semantic conventions."""
# Token usage attributes
GEN_AI_USAGE_COMPLETION_TOKENS = "gen_ai.usage.completion_tokens"
GEN_AI_USAGE_PROMPT_TOKENS = "gen_ai.usage.prompt_tokens"
# Request attributes
GEN_AI_REQUEST_MAX_TOKENS = "gen_ai.request.max_tokens"
GEN_AI_REQUEST_TOP_P = "gen_ai.request.top_p"
GEN_AI_REQUEST_TOP_K = "gen_ai.request.top_k"
GEN_AI_REQUEST_TEMPERATURE = "gen_ai.request.temperature"
GEN_AI_REQUEST_ID = "gen_ai.request.id"
GEN_AI_REQUEST_N = "gen_ai.request.n"
# Latency attributes
GEN_AI_LATENCY_TIME_TO_FIRST_TOKEN = "gen_ai.latency.time_to_first_token" # nosec B105
GEN_AI_LATENCY_E2E = "gen_ai.latency.e2e"
GEN_AI_LATENCY_TIME_IN_QUEUE = "gen_ai.latency.time_in_queue"
GEN_AI_LATENCY_KV_CACHE_TRANSFER_TIME = "gen_ai.latency.kv_cache_transfer_time"
# Response attributes
GEN_AI_RESPONSE_FINISH_REASONS = "gen_ai.response.finish_reasons"
class SpanEvents(StrEnum):
"""Span events for LLM tracing."""
KV_CACHE_TRANSFER_START = "kv_cache_transfer_start"
KV_CACHE_TRANSFER_END = "kv_cache_transfer_end"
CTX_SERVER_SELECTED = "ctx_server.selected"
GEN_SERVER_SELECTED = "gen_server.selected"
def contains_trace_headers(headers: Mapping[str, str]) -> bool:
lower_keys = {k.lower() for k in headers.keys()}
return any(h in lower_keys for h in TRACE_HEADERS)
def add_event(name: str,
attributes: Optional[Mapping[str, object]] = None,
timestamp: typing.Optional[int] = None) -> None:
"""Add an event to the current span if tracing is available."""
if not is_tracing_enabled():
return
get_current_span().add_event(name, attributes, timestamp)
@run_once
def log_tracing_disabled_warning() -> None:
logger.warning(
"Received a request with trace context but tracing is disabled")
@run_once
def insufficient_request_metrics_warning() -> None:
logger.warning(
"Insufficient request metrics available; trace generation aborted.")
def trace_span(name: str = None):
def decorator(func):
@functools.wraps(func)
async def async_wrapper(*args, **kwargs):
span_name = name if name is not None else func.__name__
if global_otlp_tracer() is None:
return await func(*args, **kwargs)
trace_headers = None
for arg in list(args) + list(kwargs.values()):
if hasattr(arg, 'headers'):
trace_headers = extract_trace_context(arg.headers)
break
with global_otlp_tracer().start_as_current_span(
span_name, kind=SpanKind.SERVER,
context=trace_headers) as span:
try:
result = await func(*args, **kwargs)
span.set_status(Status(StatusCode.OK))
return result
except Exception as e:
span.record_exception(e)
span.set_status(
Status(StatusCode.ERROR, f"An error occurred: {e}"))
raise e
return async_wrapper
return decorator