mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
96 lines
3.6 KiB
Python
96 lines
3.6 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Dict, List, Literal, Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
def get_missing_qkv_modules_from_lora_modules(
|
|
lora_target_modules: List[str]) -> List[str]:
|
|
"""Get missing QKV modules from LoRA target modules.
|
|
|
|
In current design, q_lora_params, k_lora_params and v_lora_params should be all enabled or
|
|
all disabled at the same time. However, some lora checkpoints (e.g. BART) only contain two of them,
|
|
so we use zero tensor to fill the missing ones.
|
|
"""
|
|
missing_qkv_modules = []
|
|
if any(x in lora_target_modules for x in ["attn_q", "attn_k", "attn_v"]):
|
|
for lora_module in ["attn_q", "attn_k", "attn_v"]:
|
|
if lora_module not in lora_target_modules:
|
|
missing_qkv_modules.append(lora_module)
|
|
if any(x in lora_target_modules
|
|
for x in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]):
|
|
for lora_module in ["cross_attn_q", "cross_attn_k", "cross_attn_v"]:
|
|
if lora_module not in lora_target_modules:
|
|
missing_qkv_modules.append(lora_module)
|
|
return missing_qkv_modules
|
|
|
|
|
|
def get_default_trtllm_modules_to_hf_modules():
|
|
"""Get default mapping from TensorRT-LLM module names to HuggingFace module names."""
|
|
return {
|
|
"attn_q": "q_proj",
|
|
"attn_k": "k_proj",
|
|
"attn_v": "v_proj",
|
|
"attn_qkv": "qkv_proj",
|
|
"attn_dense": "o_proj",
|
|
"mlp_h_to_4h": "gate_proj",
|
|
"mlp_4h_to_h": "down_proj",
|
|
"mlp_gate": "up_proj",
|
|
"mlp_gate_up": "gate_up_proj",
|
|
"moe_h_to_4h": "w1",
|
|
"moe_4h_to_h": "w2",
|
|
"moe_gate": "w3",
|
|
"moe_router": "gate",
|
|
}
|
|
|
|
|
|
def use_lora(
|
|
model,
|
|
lora_config: "LoraConfig",
|
|
trtllm_modules_to_hf_modules: Optional[Dict[str, str]] = None,
|
|
):
|
|
"""Use LoRA with the given model and configuration.
|
|
|
|
This function is a wrapper that delegates to the appropriate loading function
|
|
based on the LoRA checkpoint source.
|
|
"""
|
|
if lora_config.lora_ckpt_source == "nemo":
|
|
from .lora_manager import load_nemo_lora
|
|
load_nemo_lora(model, lora_config)
|
|
elif lora_config.lora_ckpt_source == "hf":
|
|
from .lora_manager import load_hf_lora
|
|
load_hf_lora(model, lora_config, trtllm_modules_to_hf_modules)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported lora_ckpt_source: {lora_config.lora_ckpt_source}")
|
|
|
|
|
|
class LoraConfig(BaseModel):
|
|
lora_dir: List[str] = Field(default_factory=list)
|
|
lora_ckpt_source: Literal["hf", "nemo"] = "hf"
|
|
max_lora_rank: int = 64
|
|
lora_target_modules: List[str] = Field(default_factory=list)
|
|
trtllm_modules_to_hf_modules: Dict[str, str] = Field(default_factory=dict)
|
|
max_loras: Optional[int] = None
|
|
max_cpu_loras: Optional[int] = None
|
|
swap_gate_up_proj_lora_b_weight: bool = True
|
|
|
|
@property
|
|
def missing_qkv_modules(self) -> List[str]:
|
|
return get_missing_qkv_modules_from_lora_modules(
|
|
self.lora_target_modules)
|