mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
932 lines
39 KiB
Python
932 lines
39 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import functools
|
|
import os
|
|
import time
|
|
from collections import defaultdict
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
import torch.nn as nn
|
|
from datasets import Dataset
|
|
from tqdm import tqdm
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.pytorch_utils import Conv1D
|
|
|
|
from ...logger import logger
|
|
from ...quantization import QuantAlgo, QuantMode
|
|
from ..convert_utils import (load_calib_dataset, smooth_gemm,
|
|
smooth_gemm_fc1_gate, weight_only_quantize_dict)
|
|
from .config import BaichuanConfig
|
|
|
|
|
|
def generate_int8(
|
|
weights: torch.Tensor,
|
|
act_range: Dict[str, torch.Tensor],
|
|
is_qkv: bool = False,
|
|
multi_query_mode: bool = False,
|
|
):
|
|
"""
|
|
This function has two purposes:
|
|
- compute quantized weights, scaled either per-tensor or per-column
|
|
- compute scaling factors
|
|
|
|
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
|
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
|
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
|
|
|
Here is the list of what we need (T means per-tensor, C per-column):
|
|
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
|
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
|
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
|
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
|
to quant range (int8) (used for CUBLAS) (T, C)
|
|
|
|
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
|
but then the model would change depending on the number of GPUs used.
|
|
|
|
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
|
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
|
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
|
"""
|
|
|
|
# compute weight scaling factors for fp->int8 and int8->fp
|
|
if is_qkv and not multi_query_mode:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
|
dim=-1, keepdims=True)[0].cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
|
|
-1).cpu().numpy()
|
|
elif is_qkv and multi_query_mode:
|
|
hidden_dim = weights.shape[0]
|
|
local_dim = act_range["w"].shape[0]
|
|
kv_dim = (local_dim - hidden_dim) // 2
|
|
scale_w_q = act_range["w"][0:hidden_dim]
|
|
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
|
scale_w_v = act_range["w"][-kv_dim:]
|
|
|
|
scale_w_qkv_t = torch.concat([
|
|
scale_w_q.max(dim=0, keepdim=True)[0],
|
|
scale_w_k.max(dim=0, keepdim=True)[0],
|
|
scale_w_v.max(dim=0, keepdim=True)[0]
|
|
])
|
|
|
|
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
else:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
|
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
|
|
|
# compute the rest of needed scaling factors
|
|
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
|
|
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
|
|
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
|
|
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_t)
|
|
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_c)
|
|
if is_qkv and not multi_query_mode:
|
|
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
|
scale_w_orig_quant_c.shape)
|
|
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
|
scale_w_orig_quant_c.shape)
|
|
if is_qkv and multi_query_mode:
|
|
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
|
scale_w_q.shape)
|
|
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
|
scale_w_k.shape)
|
|
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
|
scale_w_v.shape)
|
|
scale_y_accum_quant_t = np.concatenate(
|
|
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
|
scale_w_quant_orig_t = np.concatenate([
|
|
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
|
])
|
|
|
|
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
|
|
|
if is_qkv and multi_query_mode:
|
|
scale_w_quant_orig_t_expand = np.ones([weights.shape[-1]])
|
|
scale_w_quant_orig_t_expand[:hidden_dim] = scale_w_quant_orig_t[0]
|
|
scale_w_quant_orig_t_expand[hidden_dim:hidden_dim +
|
|
kv_dim] = scale_w_quant_orig_t[1]
|
|
scale_w_quant_orig_t_expand[-kv_dim:] = scale_w_quant_orig_t[2]
|
|
weight_int8 = to_i8(weights * scale_w_quant_orig_t_expand)
|
|
else:
|
|
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
|
return {
|
|
"weight.int8": weight_int8,
|
|
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
|
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
|
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
|
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
|
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
|
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
|
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
|
}
|
|
|
|
|
|
@torch.no_grad()
|
|
def capture_activation_range(
|
|
model: AutoModelForCausalLM,
|
|
tokenizer: AutoTokenizer,
|
|
dataset: Dataset,
|
|
num_samples: int = 512,
|
|
):
|
|
model.eval()
|
|
device = next(model.parameters()).device
|
|
act_scales: defaultdict[Any, Dict[str,
|
|
torch.Tensor]] = defaultdict(lambda: {
|
|
"x": None,
|
|
"y": None,
|
|
"w": None
|
|
})
|
|
|
|
test_token_num = 923
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def stat_tensor(
|
|
name: str,
|
|
tensor: torch.Tensor,
|
|
act_scales: defaultdict[Any, Dict[str, torch.Tensor]],
|
|
key: str,
|
|
):
|
|
hidden_dim = tensor.shape[-1]
|
|
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
|
comming_max = torch.max(tensor, dim=0)[0].float()
|
|
|
|
if act_scales[name][key] is None:
|
|
act_scales[name][key] = comming_max
|
|
else:
|
|
act_scales[name][key] = torch.max(act_scales[name][key],
|
|
comming_max)
|
|
|
|
def stat_input_hook(
|
|
m: nn.Module,
|
|
x: torch.Tensor,
|
|
y: torch.Tensor,
|
|
name: str,
|
|
):
|
|
if isinstance(x, tuple):
|
|
x = x[0]
|
|
stat_tensor(name, x, act_scales, "x")
|
|
stat_tensor(name, y, act_scales, "y")
|
|
|
|
if act_scales[name]["w"] is None:
|
|
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
|
|
None).max(dim=1)[0]
|
|
|
|
hooks = []
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
|
hooks.append(
|
|
m.register_forward_hook(
|
|
functools.partial(stat_input_hook, name=name)))
|
|
|
|
for i in tqdm(range(num_samples), desc="calibrating model"):
|
|
datapoint = dataset[i:i + 1]
|
|
line = copy.copy(datapoint)
|
|
line[0] = line[0] + ' TL;DR: '
|
|
line[0] = line[0].strip()
|
|
line[0] = line[0].replace(" n't", "n't")
|
|
line_encoded = tokenizer(line,
|
|
return_tensors="pt",
|
|
max_length=test_token_num,
|
|
padding=True,
|
|
truncation=True).input_ids.to(device)
|
|
model(line_encoded)
|
|
|
|
for h in hooks:
|
|
h.remove()
|
|
|
|
return act_scales
|
|
|
|
|
|
@torch.no_grad()
|
|
def smooth_baichuan_model(
|
|
model: AutoModelForCausalLM,
|
|
scales: Dict[Any, Dict[str, torch.Tensor]],
|
|
alpha: float,
|
|
baichuan_smoother: Dict[str, torch.Tensor],
|
|
):
|
|
# Smooth the activation and weights with smoother = $\diag{s}$
|
|
for name, module in model.named_modules():
|
|
class_name = module.__class__.__name__
|
|
if not 'Layer' in class_name:
|
|
continue
|
|
print(f'smoothing module: {name}, class_name: {class_name}')
|
|
# qkv_proj
|
|
layer_name_qkv = name + ".self_attn.W_pack"
|
|
|
|
smoother = smooth_gemm(module.self_attn.W_pack.weight,
|
|
scales[layer_name_qkv]["x"],
|
|
module.input_layernorm.weight, None, alpha)
|
|
|
|
scales[layer_name_qkv]["x"] = scales[layer_name_qkv]["x"] / smoother
|
|
scales[layer_name_qkv]["w"] = module.self_attn.W_pack.weight.abs().max(
|
|
dim=1)[0].float()
|
|
|
|
# =================================================================
|
|
layer_name = name + ".self_attn.o_proj"
|
|
smoother = smooth_gemm(module.self_attn.o_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
baichuan_smoother[layer_name] = smoother.float()
|
|
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.self_attn.o_proj.weight.abs().max(
|
|
dim=1)[0].float()
|
|
|
|
# ==================================================================
|
|
fc1_layer_name = name + ".mlp.gate_proj"
|
|
gate_layer_name = name + ".mlp.up_proj"
|
|
|
|
smoother = smooth_gemm_fc1_gate(module.mlp.gate_proj.weight,
|
|
module.mlp.up_proj.weight,
|
|
scales[fc1_layer_name]["x"],
|
|
module.post_attention_layernorm.weight,
|
|
None, alpha)
|
|
|
|
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
|
scales[fc1_layer_name]["w"] = module.mlp.gate_proj.weight.abs().max(
|
|
dim=1)[0].float()
|
|
|
|
scales[gate_layer_name]["x"] = scales[gate_layer_name]["x"] / smoother
|
|
scales[gate_layer_name]["w"] = module.mlp.up_proj.weight.abs().max(
|
|
dim=1)[0].float()
|
|
|
|
# ==================================================================
|
|
layer_name = name + ".mlp.down_proj"
|
|
smoother = smooth_gemm(module.mlp.down_proj.weight,
|
|
scales[layer_name]["x"], None, None, alpha)
|
|
baichuan_smoother[layer_name] = smoother.float()
|
|
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
|
scales[layer_name]["w"] = module.mlp.down_proj.weight.abs().max(
|
|
dim=1)[0].float()
|
|
|
|
|
|
def get_tllm_linear_sq_weight(
|
|
vals: Dict[str, np.ndarray],
|
|
prefix: str,
|
|
shape: List[int],
|
|
tensor_parallel: int,
|
|
quant_mode: QuantMode,
|
|
is_qkv: bool = False,
|
|
last_prefix: Optional[str] = None,
|
|
bias: Optional[torch.Tensor] = None,
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank: int = 0,
|
|
cat_dim: int = 0,
|
|
multi_query_mode: bool = False,
|
|
):
|
|
per_token = quant_mode.has_per_token_dynamic_scaling()
|
|
per_channel = quant_mode.has_per_channel_scaling()
|
|
results: Dict[str, torch.Tensor] = {}
|
|
|
|
def multi_query_split(
|
|
data: np.array,
|
|
start: int,
|
|
size: int,
|
|
tp_size: int,
|
|
cur_rank: int,
|
|
):
|
|
q, k, v = np.split(data, [start, start + size], axis=-1)
|
|
q_split = np.split(q, tp_size, axis=-1)
|
|
k_split = np.split(k, tp_size, axis=-1)
|
|
v_split = np.split(v, tp_size, axis=-1)
|
|
return [
|
|
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
|
for ii in range(tp_size)
|
|
][cur_rank]
|
|
|
|
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
|
|
|
if per_token:
|
|
if per_channel:
|
|
original_weights = np.array(vals["weight.int8.col"])
|
|
else:
|
|
original_weights = np.array(vals["weight.int8"])
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = np.split(original_weights,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix +
|
|
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
|
if smoother_value is None:
|
|
results[last_prefix] = torch.from_numpy(
|
|
np.array([1.0], dtype=np.float32))
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_w_quant_orig.col"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_w_quant_orig"]
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_w_quant_orig"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(vals["scale_w_quant_orig"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
|
np.array(cur_per_channel_value,
|
|
dtype=np.float32).reshape(col_shape)).contiguous()
|
|
else:
|
|
if per_channel:
|
|
original_weights = np.array(vals["weight.int8.col"])
|
|
else:
|
|
original_weights = np.array(vals["weight.int8"])
|
|
local_dim = original_weights.shape[0]
|
|
head_size = (original_weights.shape[1] - local_dim) // 2
|
|
|
|
if multi_query_mode:
|
|
cur_weights = multi_query_split(original_weights, local_dim,
|
|
head_size, tensor_parallel, rank)
|
|
else:
|
|
cur_weights = np.split(original_weights,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
if is_qkv:
|
|
hidden_dim = cur_weights.shape[0]
|
|
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
|
results[prefix +
|
|
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
|
|
|
if per_channel:
|
|
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
|
if smoother_value is None:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant.col"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_y_accum_quant.col"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
else:
|
|
cur_per_channel_value = vals["scale_y_accum_quant"]
|
|
# QKV is always per_channel
|
|
if is_qkv:
|
|
if multi_query_mode:
|
|
cur_per_channel_value = multi_query_split(
|
|
vals["scale_y_accum_quant"], local_dim, head_size,
|
|
tensor_parallel, rank)
|
|
else:
|
|
cur_per_channel_value = np.split(
|
|
vals["scale_y_accum_quant"],
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
|
|
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
|
np.array([cur_per_channel_value],
|
|
dtype=np.float32).reshape(col_shape)).contiguous()
|
|
|
|
results[last_prefix] = torch.from_numpy(
|
|
np.array([vals['scale_x_orig_quant']],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
results[prefix + 'act_scale'] = torch.from_numpy(
|
|
np.array([[vals["scale_y_quant_orig"]]],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
if smoother_value is not None:
|
|
cur_smoother_value = np.split(smoother_value,
|
|
tensor_parallel,
|
|
axis=cat_dim)[rank]
|
|
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
|
smoother_shape).contiguous().to(torch.float32)
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def split(weight: torch.Tensor,
|
|
tp_size: int,
|
|
rank: int = 0,
|
|
dim: int = 0) -> torch.Tensor:
|
|
if tp_size == 1:
|
|
return weight
|
|
elif weight.ndim == 1:
|
|
return torch.chunk(weight, tp_size)[rank].contiguous()
|
|
else:
|
|
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
|
|
|
|
|
|
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
|
|
dim: int) -> torch.Tensor:
|
|
return split(weight, tp_size, rank, dim=dim)
|
|
|
|
|
|
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> Optional[torch.Tensor]:
|
|
if f'{prefix}.weight' not in params:
|
|
return None
|
|
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
|
|
|
|
|
|
def quantize(hf_model_dir: str,
|
|
output_dir: str,
|
|
config: BaichuanConfig,
|
|
device: str = 'cuda',
|
|
calib_dataset: str = 'ccdv/cnn_dailymail',
|
|
trust_remote_code: bool = True):
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
config.to_json_file(os.path.join(output_dir, 'config.json'))
|
|
|
|
mapping = config.mapping
|
|
assert mapping.rank == 0, "quantize should be called at rank 0 only"
|
|
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
device_map='auto' if device != 'cpu' else 'cpu',
|
|
dtype='auto'
|
|
if not config.quantization._use_plugin_sq else torch.float16,
|
|
trust_remote_code=trust_remote_code)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
hf_model_dir, use_fast=False, trust_remote_code=trust_remote_code)
|
|
dataset = load_calib_dataset(calib_dataset)
|
|
|
|
act_range = capture_activation_range(hf_model, tokenizer, dataset)
|
|
smoother = {}
|
|
if config.quantization._use_plugin_sq:
|
|
smooth_baichuan_model(hf_model, act_range,
|
|
config.quantization.smoothquant_val, smoother)
|
|
|
|
quant_mode = config.quantization.quant_mode
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, config.dtype)
|
|
num_attention_heads = config.num_attention_heads
|
|
hidden_size = config.hidden_size
|
|
inter_size = config.intermediate_size
|
|
num_key_value_heads = config.num_key_value_heads
|
|
multi_query_mode = (num_key_value_heads != num_attention_heads)
|
|
|
|
for rank in range(config.mapping.world_size):
|
|
# To avoid changing the mapping arg in-place, also the given mapping from caller is rank agnostic, since quantize is called from only one rank
|
|
config = copy.deepcopy(config)
|
|
config.set_rank(rank)
|
|
weights = {}
|
|
tensor_parallel = config.mapping.tp_size
|
|
|
|
for l in config.mapping.pp_layers(config.num_hidden_layers):
|
|
prefix = f'model.layers.{l}.'
|
|
tllm_prex = f'transformer.layers.{l}.'
|
|
|
|
# self_attn.W_pack -> attention.qkv
|
|
qkv_weight = get_weight(model_params, prefix + 'self_attn.W_pack',
|
|
dtype)
|
|
qkv_weight = qkv_weight.t().numpy()
|
|
qkv_out_dim = qkv_weight.shape[1]
|
|
if not multi_query_mode:
|
|
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
|
int8_weights = generate_int8(qkv_weight,
|
|
act_range.get(prefix +
|
|
'self_attn.W_pack'),
|
|
is_qkv=True,
|
|
multi_query_mode=multi_query_mode)
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(int8_weights,
|
|
tllm_prex + 'attention.qkv.',
|
|
[1, qkv_out_dim // tensor_parallel],
|
|
tensor_parallel,
|
|
quant_mode,
|
|
is_qkv=True,
|
|
last_prefix=tllm_prex +
|
|
'input_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=rank,
|
|
cat_dim=-1,
|
|
multi_query_mode=multi_query_mode))
|
|
|
|
if config.quantization.kv_cache_quant_algo == QuantAlgo.INT8:
|
|
qkv_weight = get_weight(model_params,
|
|
prefix + 'self_attn.W_pack', dtype)
|
|
qkv_weight = qkv_weight.t().numpy()
|
|
if not multi_query_mode:
|
|
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
|
int8_weights = generate_int8(qkv_weight,
|
|
act_range.get(prefix +
|
|
'self_attn.W_pack'),
|
|
is_qkv=True,
|
|
multi_query_mode=multi_query_mode)
|
|
weights[tllm_prex +
|
|
'attention.kv_cache_scaling_factor'] = torch.from_numpy(
|
|
np.array([int8_weights['scale_y_quant_orig']],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
# attn.out_proj -> attention.dense
|
|
attn_dense_weight = get_weight(model_params,
|
|
prefix + 'self_attn.o_proj', dtype)
|
|
attn_dense_weight = attn_dense_weight.t().numpy()
|
|
int8_weights = generate_int8(
|
|
attn_dense_weight, act_range.get(prefix + 'self_attn.o_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'attention.dense.', [1, hidden_size],
|
|
tensor_parallel,
|
|
quant_mode,
|
|
is_qkv=False,
|
|
last_prefix=tllm_prex +
|
|
'attention.quantization_scaling_factor',
|
|
smoother_value=smoother[(prefix + 'self_attn.o_proj')],
|
|
smoother_shape=[1, hidden_size // tensor_parallel],
|
|
rank=rank,
|
|
cat_dim=0))
|
|
|
|
# mlp.gate_proj -> mlp.fc
|
|
mlp_fc_weight = get_weight(model_params, prefix + 'mlp.gate_proj',
|
|
dtype)
|
|
mlp_fc_weight = mlp_fc_weight.t().numpy()
|
|
int8_weights = generate_int8(
|
|
mlp_fc_weight, act_range.get(prefix + 'mlp.gate_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.fc.', [1, inter_size // tensor_parallel],
|
|
tensor_parallel,
|
|
quant_mode,
|
|
is_qkv=False,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=rank,
|
|
cat_dim=-1))
|
|
|
|
# mlp.down_proj -> mlp.proj
|
|
mlp_proj_weight = get_weight(model_params, prefix + 'mlp.down_proj',
|
|
dtype)
|
|
mlp_proj_weight = mlp_proj_weight.t().numpy()
|
|
int8_weights = generate_int8(
|
|
mlp_proj_weight, act_range.get(prefix + 'mlp.down_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.proj.', [1, hidden_size],
|
|
tensor_parallel,
|
|
quant_mode,
|
|
is_qkv=False,
|
|
last_prefix=tllm_prex + 'mlp.quantization_scaling_factor',
|
|
smoother_value=smoother[prefix + 'mlp.down_proj'],
|
|
smoother_shape=[1, inter_size // tensor_parallel],
|
|
rank=rank,
|
|
cat_dim=0))
|
|
|
|
# mlp.up_proj -> mlp.gate
|
|
mlp_gate_weight = get_weight(model_params, prefix + 'mlp.up_proj',
|
|
dtype)
|
|
mlp_gate_weight = mlp_gate_weight.t().numpy()
|
|
int8_weights = generate_int8(mlp_gate_weight,
|
|
act_range.get(prefix + 'mlp.up_proj'))
|
|
weights.update(
|
|
get_tllm_linear_sq_weight(
|
|
int8_weights,
|
|
tllm_prex + 'mlp.gate.', [1, inter_size // tensor_parallel],
|
|
tensor_parallel,
|
|
quant_mode,
|
|
is_qkv=False,
|
|
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
|
smoother_value=None,
|
|
smoother_shape=None,
|
|
rank=rank,
|
|
cat_dim=-1))
|
|
|
|
# input layer_norm
|
|
input_ln_weight = get_weight(model_params,
|
|
prefix + 'input_layernorm', dtype)
|
|
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
|
|
|
# post layer_norm
|
|
post_ln_weight = get_weight(model_params,
|
|
prefix + 'post_attention_layernorm',
|
|
dtype)
|
|
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
|
|
|
embed_w = get_weight(model_params, 'model.embed_tokens', dtype)
|
|
if config.mapping.is_first_pp_rank():
|
|
# Embedding
|
|
if config.use_parallel_embedding:
|
|
embed_w = split_matrix(embed_w,
|
|
config.mapping.tp_size,
|
|
config.mapping.tp_rank,
|
|
dim=config.embedding_sharding_dim)
|
|
weights['transformer.vocab_embedding.weight'] = embed_w
|
|
|
|
lm_head_w = get_weight(model_params, 'lm_head', dtype)
|
|
if config.mapping.is_last_pp_rank():
|
|
# lm_head weight and bias
|
|
weights['lm_head.weight'] = split_matrix(lm_head_w.clone(),
|
|
config.mapping.tp_size,
|
|
config.mapping.tp_rank,
|
|
dim=0)
|
|
ln_f_w = get_weight(model_params, 'model.norm', dtype)
|
|
# ln_f weight and bias
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
|
|
del weights
|
|
|
|
|
|
def load_weights_from_hf_model(hf_model: AutoModelForCausalLM,
|
|
config: BaichuanConfig):
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, config.dtype)
|
|
num_hidden_layers = config.num_hidden_layers
|
|
hf_key = [
|
|
"model.embed_tokens.weight", # vocab_embedding
|
|
"lm_head.weight", # lm_head
|
|
"model.norm.weight", # ln_f
|
|
"self_attn.W_pack.weight", # attention.qkv
|
|
"self_attn.o_proj.weight", # attention.dense
|
|
"mlp.up_proj.weight", # mlp.gate
|
|
"mlp.down_proj.weight", # mlp.proj
|
|
"mlp.gate_proj.weight", # mlp.fc
|
|
"input_layernorm.weight", # input_layernorm
|
|
"post_attention_layernorm.weight", # post_layernorm
|
|
]
|
|
|
|
def load(key_id: int, layer_idx: int = -1, tp_dim: int = -1):
|
|
layer_prefix = "" if layer_idx == -1 else f"model.layers.{layer_idx}."
|
|
v: torch.Tensor = model_params[layer_prefix + hf_key[key_id]]
|
|
if key_id == 3:
|
|
q_emb = v.shape[0] // 3
|
|
model_emb = v.shape[1]
|
|
v = v.reshape(3, q_emb, model_emb)
|
|
if v.shape[1] % config.mapping.tp_size != 0:
|
|
logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(config.mapping.tp_size))
|
|
v = v.split(v.shape[1] // config.mapping.tp_size,
|
|
dim=1)[config.mapping.tp_rank]
|
|
v = v.reshape(3 * (q_emb // config.mapping.tp_size), model_emb)
|
|
if tp_dim >= 0:
|
|
if v.shape[tp_dim] % config.mapping.tp_size != 0:
|
|
logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(config.mapping.tp_size))
|
|
v = v.split(v.shape[tp_dim] // config.mapping.tp_size,
|
|
dim=tp_dim)[config.mapping.tp_rank]
|
|
v = v.to(dtype).contiguous().detach().cpu()
|
|
return v
|
|
|
|
# Convert vocab_embedding
|
|
if config.mapping.is_first_pp_rank():
|
|
embed_w = load(0)
|
|
if config.use_parallel_embedding:
|
|
embed_w = split_matrix(embed_w,
|
|
config.mapping.tp_size,
|
|
config.mapping.tp_rank,
|
|
dim=config.embedding_sharding_dim)
|
|
weights['transformer.vocab_embedding.weight'] = embed_w
|
|
|
|
# Convert lm_head
|
|
v = load(1, -1, 0)
|
|
if config.model_version.startswith('v2'):
|
|
v = torch.nn.functional.normalize(v)
|
|
if config.mapping.is_last_pp_rank():
|
|
weights['lm_head.weight'] = v
|
|
|
|
# Convert ln_f
|
|
if config.mapping.is_last_pp_rank():
|
|
weights['transformer.ln_f.weight'] = load(2)
|
|
|
|
# Convert layers
|
|
layers_range = config.mapping.pp_layers(num_hidden_layers)
|
|
for l in layers_range:
|
|
prefix = f"transformer.layers.{l}."
|
|
weights[prefix + 'attention.qkv.weight'] = load(3, l)
|
|
weights[prefix + 'attention.dense.weight'] = load(4, l, 1)
|
|
weights[prefix + 'mlp.gate.weight'] = load(5, l, 0)
|
|
weights[prefix + 'mlp.proj.weight'] = load(6, l, 1)
|
|
weights[prefix + 'mlp.fc.weight'] = load(7, l, 0)
|
|
weights[prefix + 'input_layernorm.weight'] = load(8, l)
|
|
weights[prefix + 'post_layernorm.weight'] = load(9, l)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
|
|
return weight_only_quantize_dict(weights,
|
|
quant_algo=config.quantization.quant_algo,
|
|
plugin=True)
|
|
|
|
|
|
def load_weights_from_gptq(config: BaichuanConfig, quant_ckpt_path: str):
|
|
logger.info('Loading weights from groupwise GPTQ Baichuan safetensors...')
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
gptq_baichuan = safetensors.safe_open(quant_ckpt_path,
|
|
framework="pt",
|
|
device=0)
|
|
gptq_prefix = "model."
|
|
gptq_suffix_list = [".qweight", ".qzeros", ".scales"]
|
|
gptq_key_list = [
|
|
"embed_tokens.weight", # vocab_embedding
|
|
"lm_head.weight", # lm_head
|
|
"norm.weight", # ln_f
|
|
"self_attn.W_pack", # attention.qkv
|
|
"_proj", #
|
|
"self_attn.o_proj", # attention.dense
|
|
"mlp.up_proj", # mlp.gate
|
|
"mlp.down_proj", # mlp.proj
|
|
"mlp.gate_proj", # mlp.fc
|
|
"input_layernorm.weight", # input_layernorm
|
|
"post_attention_layernorm.weight", # post_layernorm
|
|
]
|
|
|
|
packer = torch.ops.trtllm.pack_int8_tensor_to_packed_int4
|
|
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
|
torch_dtype = getattr(torch, config.dtype)
|
|
|
|
def load(key: str, no_prefix: bool = False):
|
|
if no_prefix:
|
|
return gptq_baichuan.get_tensor(key)
|
|
else:
|
|
return gptq_baichuan.get_tensor(gptq_prefix + key)
|
|
|
|
def torch_split(tensor: torch.Tensor, dim: int):
|
|
if tensor.shape[dim] % config.mapping.tp_size != 0:
|
|
logger.error(
|
|
"Current weight shape is invalid for mapping.tp_size=" +
|
|
str(config.mapping.tp_size))
|
|
assert False, "Invalid TP size"
|
|
return tensor.split(tensor.shape[dim] // config.mapping.tp_size,
|
|
dim=dim)[config.mapping.tp_rank]
|
|
|
|
def unpack_int32_into_int8(w_packed: torch.Tensor):
|
|
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
|
|
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
|
|
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
|
|
w_packed_int4x2.shape[1] * 2,
|
|
dtype=torch.int8)
|
|
w_unpacked[:, ::2] = w_packed_int4x2 % 16
|
|
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
|
|
return w_unpacked.contiguous()
|
|
|
|
def process_and_assign_weight(prefix: str,
|
|
tensors: List[torch.Tensor],
|
|
tp_dim: int = -1):
|
|
if tp_dim == -1:
|
|
qweight_int32, qzeros_int32, scales_fp16 = [
|
|
item.cpu() for item in tensors
|
|
]
|
|
else:
|
|
qweight_int32, qzeros_int32, scales_fp16 = [
|
|
torch_split(item, tp_dim).cpu() for item in tensors
|
|
]
|
|
|
|
USE_UINT4_INPUT = 1 # Set to true if checkpoint store UINT4 weights
|
|
USE_GPTQ_FOR_LLAMA = 1 # GPTQ-for-LLaMA added 1 to zeros
|
|
|
|
qweight_unpacked_int8 = unpack_int32_into_int8(
|
|
qweight_int32.T).T.contiguous() - 8
|
|
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
|
|
torch.quint4x2,
|
|
torch.float16).view(torch.float16)
|
|
# zeros = zeros * scales
|
|
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
|
|
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * USE_UINT4_INPUT -
|
|
USE_GPTQ_FOR_LLAMA) * scales_fp16
|
|
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
|
|
|
|
# return processed interleaved weight, original scales and zeros * scales
|
|
weights[prefix + ".weight"] = qweight_interleaved
|
|
weights[prefix + ".weights_scaling_factor"] = scales_fp16
|
|
weights[prefix + ".zero"] = zeros_x_scales_fp16
|
|
|
|
# Load weights from GPTQ checkpoint into TRT-LLM module
|
|
# 1. vocab_embedding
|
|
v = load(gptq_key_list[0])
|
|
if config.mapping.is_first_pp_rank():
|
|
if config.use_parallel_embedding:
|
|
v = split_matrix(v,
|
|
config.mapping.tp_size,
|
|
config.mapping.tp_rank,
|
|
dim=config.embedding_sharding_dim)
|
|
weights['transformer.vocab_embedding.weight'] = v.to(torch_dtype)
|
|
|
|
# 2. lm_head
|
|
original_v = load(gptq_key_list[1], True)
|
|
if config.model_version.startswith('v2'):
|
|
# baichuan v2 models use NormHead
|
|
logger.info(f'Normalizing lm_head.weight for {config.model_version}')
|
|
v = torch_split(torch.nn.functional.normalize(original_v), 0)
|
|
else:
|
|
v = torch_split(original_v, 0)
|
|
if config.mapping.is_last_pp_rank():
|
|
weights['lm_head.weight'] = v.to(torch_dtype)
|
|
|
|
# 3. ln_f
|
|
v = load(gptq_key_list[2])
|
|
if config.mapping.is_last_pp_rank():
|
|
weights['transformer.ln_f.weight'] = v.to(torch_dtype)
|
|
|
|
# 4. Weights inside each layer
|
|
num_hidden_layers = config.num_hidden_layers
|
|
layers_range = config.mapping.pp_layers(num_hidden_layers)
|
|
for l in layers_range:
|
|
layer_idx = l - layers_range[0]
|
|
hf_prefix = f"layers.{l}."
|
|
tllm_prefix = f"transformer.layers.{l}."
|
|
logger.info(f'Process weights in layer: {layer_idx}')
|
|
|
|
# 4.1 attention.qkv
|
|
qkv_weight_list = []
|
|
for suf in gptq_suffix_list:
|
|
qkv_list = []
|
|
comp_part = load(hf_prefix + gptq_key_list[3] + suf)
|
|
qkv = torch.chunk(comp_part, 3, 1)
|
|
for i in range(3):
|
|
comp_part = qkv[i]
|
|
comp_part = torch_split(comp_part, 1)
|
|
qkv_list.append(comp_part)
|
|
qkv_weight_list.append(torch.cat(qkv_list, dim=1))
|
|
|
|
process_and_assign_weight(tllm_prefix + "attention.qkv",
|
|
qkv_weight_list)
|
|
|
|
# 4.2 attention.dense
|
|
v = [
|
|
load(hf_prefix + gptq_key_list[5] + suf) for suf in gptq_suffix_list
|
|
]
|
|
process_and_assign_weight(tllm_prefix + "attention.dense", v, 0)
|
|
|
|
# 4.3 mlp.gate
|
|
v = [
|
|
load(hf_prefix + gptq_key_list[6] + suf) for suf in gptq_suffix_list
|
|
]
|
|
process_and_assign_weight(tllm_prefix + "mlp.gate", v, 1)
|
|
|
|
# 4.4 mlp.proj
|
|
v = [
|
|
load(hf_prefix + gptq_key_list[7] + suf) for suf in gptq_suffix_list
|
|
]
|
|
process_and_assign_weight(tllm_prefix + "mlp.proj", v, 0)
|
|
|
|
# 4.5 mlp.fc
|
|
v = [
|
|
load(hf_prefix + gptq_key_list[8] + suf) for suf in gptq_suffix_list
|
|
]
|
|
process_and_assign_weight(tllm_prefix + "mlp.fc", v, 1)
|
|
|
|
# 4.6 input_layernorm
|
|
v = load(hf_prefix + gptq_key_list[9])
|
|
weights[tllm_prefix + 'input_layernorm.weight'] = v.to(torch_dtype)
|
|
|
|
# 4.7 pst_layernorm
|
|
v = load(hf_prefix + gptq_key_list[10])
|
|
weights[tllm_prefix + 'post_layernorm.weight'] = v.to(torch_dtype)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
logger.info(f'Weights loaded. Total time: {t}')
|
|
return weights
|