mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
196 lines
7.4 KiB
Python
196 lines
7.4 KiB
Python
from typing import Optional
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import recv, send
|
|
from ...layers import (Attention, AttentionMaskType, ColumnLinear, Embedding,
|
|
GatedMLP, LayerNorm, PositionEmbeddingType)
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ..model_weights_loader import ModelWeightsLoader
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
QuantConfig)
|
|
from .config import CohereConfig
|
|
|
|
|
|
class CohereDecoderLayer(Module):
|
|
|
|
def __init__(self, config: CohereConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
bias=False,
|
|
dtype=config.dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
self.local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=self.local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
attention_head_size=config.head_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=config.dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=config.attn_bias,
|
|
position_embedding_type=PositionEmbeddingType.rope_gptj,
|
|
rotary_embedding_base=config.rotary_base,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
tp_rank=config.mapping.tp_rank,
|
|
qk_layernorm=config.qk_layernorm,
|
|
layernorm_share=False,
|
|
eps=config.norm_epsilon,
|
|
quant_mode=config.quant_mode)
|
|
|
|
self.mlp = GatedMLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
bias=False,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
quant_mode=config.quant_mode)
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
spec_decoding_params=None,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
assert not (
|
|
default_net().plugin_config.reduce_fusion
|
|
), "Custom all reduce and residual mlp can't be enabled at the same time."
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
spec_decoding_params=spec_decoding_params,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
mlp_output = self.mlp(hidden_states)
|
|
hidden_states = residual + attention_output + mlp_output
|
|
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class CohereModel(Module):
|
|
|
|
def __init__(self, config: CohereConfig) -> None:
|
|
super().__init__()
|
|
|
|
self.mapping = config.mapping
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
tp_rank=config.mapping.tp_rank)
|
|
|
|
self.layers = DecoderLayerList(CohereDecoderLayer, config)
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
bias=False,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
spec_decoding_params=None,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
):
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
|
|
hidden_states = self.layers.forward(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
spec_decoding_params=spec_decoding_params)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class CohereForCausalLM(DecoderModelForCausalLM):
|
|
config_class = CohereConfig
|
|
|
|
def __init__(self, config: CohereConfig):
|
|
transformer = CohereModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
self.quant_mode = config.quant_mode
|
|
self.mapping = config.mapping
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_model_or_dir: str,
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
''' Create a CohereForCausalLM object from give parameters
|
|
'''
|
|
|
|
config = CohereConfig.from_hugging_face(hf_model_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
model = cls(config)
|
|
custom_dict = {
|
|
'q_layernorm': 'q_norm',
|
|
'k_layernorm': 'k_norm',
|
|
}
|
|
loader = ModelWeightsLoader(hf_model_or_dir, custom_dict)
|
|
loader.generate_tllm_weights(model)
|
|
|
|
return model
|