mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
Signed-off-by: wili-65535 <wili-65535@users.noreply.github.com> Co-authored-by: wili-65535 <wili-65535@users.noreply.github.com>
222 lines
9.3 KiB
Python
222 lines
9.3 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
from typing import Optional, Union
|
|
|
|
from transformers import LlamaConfig
|
|
|
|
from ...mapping import Mapping
|
|
from ..convert_utils import infer_dtype
|
|
from ..llama.config import LLaMAConfig
|
|
from ..modeling_utils import QuantAlgo, QuantConfig
|
|
|
|
|
|
class EagleConfig(LLaMAConfig):
|
|
|
|
def __init__(self,
|
|
*,
|
|
num_eagle_layers: int = 1,
|
|
max_draft_len: int = 63,
|
|
max_non_leaves_per_layer: int = 10,
|
|
**kwargs):
|
|
self.num_eagle_layers = num_eagle_layers
|
|
self.max_non_leaves_per_layer = max_non_leaves_per_layer
|
|
self.max_draft_len = max_draft_len
|
|
self.eagle_net_config = LLaMAConfig.from_dict(
|
|
kwargs["eagle_net_config"])
|
|
del kwargs["eagle_net_config"]
|
|
super().__init__(**kwargs)
|
|
|
|
def to_dict(self):
|
|
output = super().to_dict()
|
|
# Serialize the fields added in EagleConfig
|
|
output['num_eagle_layers'] = self.num_eagle_layers
|
|
output['max_non_leaves_per_layer'] = self.max_non_leaves_per_layer
|
|
output['max_draft_len'] = self.max_draft_len
|
|
output['eagle_net_config'] = self.eagle_net_config.to_dict()
|
|
return output
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
import transformers
|
|
trust_remote_code = kwargs.pop('trust_remote_code', True)
|
|
speculative_config_or_dir = kwargs.pop('speculative_model_dir', None)
|
|
|
|
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
|
|
hf_config = hf_config_or_dir
|
|
else:
|
|
hf_config_dir = str(hf_config_or_dir)
|
|
|
|
hf_config = transformers.AutoConfig.from_pretrained(
|
|
hf_config_dir, trust_remote_code=trust_remote_code)
|
|
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
|
|
|
|
hf_config = None
|
|
hf_config_or_dir if speculative_config_or_dir is None else speculative_config_or_dir
|
|
if hf_config_or_dir is not None:
|
|
hf_config = LlamaConfig.from_pretrained(hf_config_or_dir)
|
|
|
|
hf_config.model_type
|
|
n_head = hf_config.num_attention_heads
|
|
inter_size = hf_config.intermediate_size
|
|
n_layer = hf_config.num_hidden_layers
|
|
n_embd = hf_config.hidden_size
|
|
n_kv_head = hf_config.num_key_value_heads
|
|
rms_norm_eps = hf_config.rms_norm_eps
|
|
vocab_size = hf_config.vocab_size
|
|
rotary_scaling = hf_config.rope_scaling
|
|
rotary_base = hf_config.rope_theta
|
|
n_positions = hf_config.max_position_embeddings
|
|
hidden_act = hf_config.hidden_act
|
|
dtype = str(hf_config.torch_dtype)[6:] if dtype == 'auto' else dtype
|
|
if hasattr(hf_config, 'head_dim'):
|
|
head_dim = hf_config.head_dim
|
|
else:
|
|
head_dim = hf_config.n_embd // hf_config.n_head
|
|
if hasattr(hf_config, 'head_size'):
|
|
head_size = hf_config.head_size
|
|
else:
|
|
head_size = head_dim
|
|
|
|
if speculative_config_or_dir is None:
|
|
hf_config_eagle = hf_config.eagle
|
|
n_head_eagle = hf_config_eagle['num_attention_heads']
|
|
inter_size_eagle = hf_config_eagle['intermediate_size']
|
|
n_layer_eagle = hf_config_eagle['num_hidden_layers']
|
|
n_embd_eagle = hf_config_eagle['hidden_size']
|
|
n_kv_head_eagle = hf_config_eagle['num_key_value_heads']
|
|
rms_norm_eps_eagle = hf_config_eagle['rms_norm_eps']
|
|
n_positions_eagle = hf_config_eagle['max_position_embeddings']
|
|
else:
|
|
hf_config_eagle = LlamaConfig.from_pretrained(
|
|
speculative_config_or_dir)
|
|
n_head_eagle = hf_config_eagle.num_attention_heads
|
|
inter_size_eagle = hf_config_eagle.intermediate_size
|
|
n_layer_eagle = hf_config_eagle.num_hidden_layers
|
|
n_embd_eagle = hf_config_eagle.hidden_size
|
|
n_kv_head_eagle = hf_config_eagle.num_key_value_heads
|
|
rms_norm_eps_eagle = hf_config_eagle.rms_norm_eps
|
|
n_positions_eagle = hf_config_eagle.max_position_embeddings
|
|
|
|
if rotary_scaling is not None:
|
|
# assert use_gpt_attention_plugin, "RoPE scaling is only supported through GPT attention plugin."
|
|
rotary_scaling = {
|
|
"type": rotary_scaling["rope_type"],
|
|
}
|
|
rotary_scaling = rotary_scaling
|
|
|
|
eagle_net_config = {
|
|
'architecture': "LlamaForCausalLM",
|
|
'dtype': dtype,
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': n_layer_eagle,
|
|
'num_attention_heads': n_head_eagle,
|
|
'hidden_size': n_embd_eagle,
|
|
'intermediate_size': inter_size_eagle,
|
|
'num_key_value_heads': n_kv_head_eagle,
|
|
'vocab_size': vocab_size,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': n_positions_eagle,
|
|
'hidden_act': hidden_act,
|
|
'rotary_base': rotary_base,
|
|
'rotary_scaling': rotary_scaling,
|
|
'norm_epsilon': rms_norm_eps_eagle,
|
|
'quantization': {
|
|
'quant_algo': None,
|
|
'kv_cache_quant_algo': None,
|
|
},
|
|
'mapping': {
|
|
'world_size': mapping.world_size,
|
|
'tp_size': mapping.tp_size,
|
|
'pp_size': mapping.pp_size,
|
|
},
|
|
'use_parallel_embedding': kwargs['use_parallel_embedding'],
|
|
'embedding_sharding_dim': kwargs['embedding_sharding_dim'],
|
|
'head_dim': head_dim,
|
|
'head_size': head_size
|
|
}
|
|
|
|
config = {
|
|
'architecture': 'EagleForCausalLM',
|
|
'dtype': dtype,
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': n_layer,
|
|
'num_attention_heads': n_head,
|
|
'hidden_size': n_embd,
|
|
'intermediate_size': inter_size,
|
|
'num_key_value_heads': n_kv_head,
|
|
'vocab_size': vocab_size,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': n_positions,
|
|
'hidden_act': hidden_act,
|
|
'rotary_base': rotary_base,
|
|
'rotary_scaling': rotary_scaling,
|
|
'norm_epsilon': rms_norm_eps,
|
|
'quantization': {
|
|
'quant_algo': None,
|
|
'kv_cache_quant_algo': None,
|
|
},
|
|
'mapping': {
|
|
'world_size': mapping.world_size,
|
|
'tp_size': mapping.tp_size,
|
|
'pp_size': mapping.pp_size,
|
|
},
|
|
'use_parallel_embedding': kwargs['use_parallel_embedding'],
|
|
'embedding_sharding_dim': kwargs['embedding_sharding_dim'],
|
|
'num_eagle_layers': kwargs['speculative_config'].num_eagle_layers,
|
|
'max_non_leaves_per_layer':
|
|
kwargs['speculative_config'].max_non_leaves_per_layer,
|
|
'eagle_net_config': eagle_net_config
|
|
}
|
|
if quant_config:
|
|
config['quantization']['quant_algo'] = quant_config.quant_algo
|
|
config['quantization'][
|
|
'kv_cache_quant_algo'] = quant_config.kv_cache_quant_algo
|
|
|
|
if quant_config.quant_algo == QuantAlgo.W4A16_GPTQ:
|
|
config['quantization'].update({
|
|
"group_size": quant_config.group_size,
|
|
"has_zero_point": True,
|
|
"pre_quant_scale": False,
|
|
'quant_algo': QuantAlgo.W4A16_GPTQ
|
|
})
|
|
eagle_quant_config = {}
|
|
try:
|
|
with open(
|
|
str(speculative_config_or_dir) + '/' +
|
|
'hf_quant_config.json') as f:
|
|
eagle_quant_config = json.load(f)
|
|
if "lm_head" in eagle_quant_config['quantization'][
|
|
'exclude_modules']:
|
|
eagle_quant_config['quantization']['exclude_modules'] += [
|
|
f"eagle_nets.{i}.lm_head" for i in range(
|
|
kwargs['speculative_config'].num_eagle_layers)
|
|
]
|
|
config['quantization'].update(
|
|
eagle_quant_config['quantization'])
|
|
config['eagle_net_config']['quantization'].update(
|
|
eagle_quant_config['quantization'])
|
|
except IOError:
|
|
pass
|
|
|
|
return cls.from_dict(config)
|