mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
268 lines
11 KiB
Python
268 lines
11 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
from typing import Optional, Union
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from tensorrt_llm._utils import numpy_to_torch
|
|
from tensorrt_llm.models.llama.model import LLaMAForCausalLM
|
|
from tensorrt_llm.models.medusa.weight import load_medusa_hf
|
|
from tensorrt_llm.models.qwen.model import QWenForCausalLM
|
|
|
|
from ..._common import default_net
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import ACT2FN, stack
|
|
from ...layers import ColumnLinear
|
|
from ...mapping import Mapping
|
|
from ...module import Module, ModuleList
|
|
from ..modeling_utils import PretrainedModel, QuantConfig
|
|
from .config import MedusaConfig
|
|
from .weight import convert_hf_llama
|
|
|
|
|
|
class MedusaLayer(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
hidden_act="silu",
|
|
dtype=None,
|
|
mapping=Mapping(),
|
|
):
|
|
super().__init__()
|
|
self.linear = ColumnLinear(hidden_size,
|
|
hidden_size,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True)
|
|
self.hidden_act = hidden_act
|
|
|
|
def forward(self, x):
|
|
return x + ACT2FN[self.hidden_act](self.linear(x))
|
|
|
|
|
|
class MedusaHead(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
num_layers,
|
|
hidden_size,
|
|
vocab_size,
|
|
hidden_act="silu",
|
|
dtype=None,
|
|
mapping=Mapping(),
|
|
):
|
|
super().__init__()
|
|
self.medusa_layers = ModuleList([
|
|
MedusaLayer(hidden_size=hidden_size,
|
|
hidden_act=hidden_act,
|
|
dtype=dtype,
|
|
mapping=mapping) for _ in range(num_layers)
|
|
])
|
|
self.lm_head = ColumnLinear(hidden_size,
|
|
vocab_size,
|
|
bias=False,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size,
|
|
gather_output=True)
|
|
return
|
|
|
|
def forward(self, x):
|
|
hidden_states = x
|
|
for layer in self.medusa_layers:
|
|
hidden_states = layer(hidden_states)
|
|
return self.lm_head(hidden_states)
|
|
|
|
|
|
# MedusaForCausalLm is a thin wrapper that picks parent class for GenericMedusaForCausalLM.
|
|
# All medusa functionality is defined in GenericMedusaForCausalLM.
|
|
class MedusaForCausalLm(PretrainedModel):
|
|
config_class = MedusaConfig
|
|
|
|
def __init__(self, config: MedusaConfig):
|
|
super().__init__(config)
|
|
|
|
BaseLM = QWenForCausalLM if hasattr(
|
|
config,
|
|
"model_type") and "qwen" in config.model_type else LLaMAForCausalLM
|
|
|
|
class GenericMedusaForCausalLM(BaseLM):
|
|
|
|
def __init__(self, config: MedusaConfig):
|
|
super().__init__(config)
|
|
self.num_medusa_heads = config.num_medusa_heads
|
|
self.num_medusa_layers = config.num_medusa_layers
|
|
self.hidden_size = config.hidden_size
|
|
self.vocab_size = config.vocab_size
|
|
vocab_size_padded = pad_vocab_size(self.vocab_size,
|
|
config.mapping.tp_size)
|
|
self.medusa_heads = ModuleList([
|
|
MedusaHead(num_layers=self.num_medusa_layers,
|
|
hidden_size=config.hidden_size,
|
|
vocab_size=vocab_size_padded,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
mapping=config.mapping)
|
|
for _ in range(self.num_medusa_heads)
|
|
])
|
|
self.max_medusa_token_len = config.max_draft_len
|
|
|
|
def forward(self, *args, **kwargs):
|
|
output_original = True
|
|
hidden_states = super().forward(*args, **kwargs)
|
|
|
|
if kwargs['use_cache']:
|
|
if default_net().plugin_config.paged_kv_cache:
|
|
lm_logits, hidden_states, _ = hidden_states
|
|
else:
|
|
lm_logits, presents, hidden_states = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
medusa_logits = []
|
|
for i in range(self.num_medusa_heads):
|
|
medusa_logits.append(
|
|
self.medusa_heads[i](hidden_states))
|
|
# [num_medusa_heads, batch_size, num_medusa_tokens + 1, padded_vocab_size].
|
|
# Remove padding [num_medusa_heads, batch_size * num_medusa_tokens + 1, padded_vocab_size].
|
|
medusa_logits = stack(medusa_logits, dim=0)
|
|
medusa_logits.mark_output('medusa_logits',
|
|
self.config.logits_dtype)
|
|
else:
|
|
hidden_states.mark_output('hidden_states_output',
|
|
self.config.dtype)
|
|
|
|
if kwargs['use_cache'] and default_net(
|
|
).plugin_config.paged_kv_cache == False:
|
|
if self.mapping.is_last_pp_rank():
|
|
if output_original:
|
|
return (medusa_logits, lm_logits, presents)
|
|
return (medusa_logits, presents)
|
|
return (hidden_states, presents)
|
|
else:
|
|
if self.mapping.is_last_pp_rank():
|
|
if output_original:
|
|
return medusa_logits, lm_logits
|
|
return medusa_logits
|
|
return hidden_states
|
|
|
|
def prepare_inputs(self, *args, **kwargs):
|
|
kwargs['speculative_decoding_draft_tokens_external'] = False
|
|
kwargs['max_draft_len'] = self.max_medusa_token_len
|
|
return super().prepare_inputs(*args, **kwargs)
|
|
|
|
self.model = GenericMedusaForCausalLM(config)
|
|
|
|
# Specialization to redirect accesses to self.model
|
|
def __getattribute__(self, name):
|
|
if name == 'model' or '__' in name:
|
|
return object.__getattribute__(self, name)
|
|
else:
|
|
model = object.__getattribute__(self, 'model')
|
|
return model.__getattribute__(name)
|
|
|
|
# Override specialized __setattr__ defined in Module
|
|
def __setattr__(self, name, value) -> None:
|
|
object.__setattr__(self, name, value)
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
import transformers
|
|
|
|
assert hf_model_or_dir is not None
|
|
speculative_model_dir = kwargs.get('speculative_model_dir', None)
|
|
|
|
use_preloading = isinstance(hf_model_or_dir,
|
|
transformers.PreTrainedModel)
|
|
if use_preloading:
|
|
hf_model = hf_model_or_dir
|
|
hf_config_or_dir = hf_model.config
|
|
else:
|
|
hf_model_dir = hf_model_or_dir
|
|
hf_config_or_dir = hf_model_or_dir
|
|
|
|
config = MedusaConfig.from_hugging_face(hf_config_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
|
|
# ModelOpt ckpt has combined base model and Medusa-head
|
|
is_modelopt_ckpt = True if not speculative_model_dir else False
|
|
|
|
if not use_preloading:
|
|
trust_remote_code = kwargs.pop('trust_remote_code', True)
|
|
|
|
if is_modelopt_ckpt:
|
|
hf_model = LLaMAForCausalLM.from_hugging_face(
|
|
hf_model_dir,
|
|
dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
else:
|
|
hf_model = AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir,
|
|
dtype="auto",
|
|
trust_remote_code=trust_remote_code)
|
|
|
|
assert isinstance(hf_model, transformers.PreTrainedModel)
|
|
|
|
if is_modelopt_ckpt:
|
|
weights = {
|
|
name: numpy_to_torch(param.raw_value)
|
|
for name, param in hf_model.named_parameters()
|
|
}
|
|
else:
|
|
weights = convert_hf_llama(
|
|
hf_model,
|
|
config.mapping,
|
|
dtype='float16',
|
|
use_parallel_embedding=config.use_parallel_embedding)
|
|
|
|
model = cls(config)
|
|
|
|
if is_modelopt_ckpt:
|
|
num_medusa_heads = config.config.num_medusa_heads
|
|
num_medusa_layers = config.config.num_medusa_layers
|
|
speculative_model_dir = hf_model_or_dir
|
|
else:
|
|
config_file = speculative_model_dir / "config.json"
|
|
with open(config_file) as fp:
|
|
model_config = json.load(fp)
|
|
|
|
num_medusa_heads = kwargs[
|
|
'speculative_config'].num_medusa_heads if 'speculative_config' in kwargs else model_config.get(
|
|
'medusa_num_heads', None)
|
|
num_medusa_layers = model_config.get('medusa_num_layers', None)
|
|
medusa_weights = load_medusa_hf(medusa_path=speculative_model_dir,
|
|
num_medusa_heads=num_medusa_heads,
|
|
num_medusa_layers=num_medusa_layers,
|
|
mapping=mapping,
|
|
dtype="float16",
|
|
is_modelopt_ckpt=is_modelopt_ckpt)
|
|
weights.update(medusa_weights)
|
|
model.load(weights)
|
|
return model
|