TensorRT-LLMs/tensorrt_llm/profiler.py
2ez4bz dc52b67492
linting(python): Enable ruff on more files (wave 1/N) (#5140)
Signed-off-by: William Zhang <133824995+2ez4bz@users.noreply.github.com>
2025-06-14 19:19:34 +08:00

279 lines
8.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from functools import partial
from typing import Literal, Optional, Tuple, Union
# isort: off
import torch
import tensorrt as trt
# isort: on
try:
import psutil
except ImportError:
psutil = None
try:
import pynvml
except ImportError:
pynvml = None
import traceback
from tensorrt_llm.logger import logger
from ._common import _is_building
if psutil is None:
logger.warning(
"A required package 'psutil' is not installed. Will not "
"monitor the host memory usages. Please install the package "
"first, e.g, 'pip install psutil'."
)
if pynvml is None:
logger.warning(
"A required package 'pynvml' is not installed. Will not "
"monitor the device memory usages. Please install the package "
"first, e.g, 'pip install nvidia-ml-py>=12'."
)
class Timer:
def __init__(self):
self._start_times = {}
self._total_elapsed_times = {}
def start(self, tag):
self._start_times[tag] = time.time()
def stop(self, tag) -> float:
elapsed_time = time.time() - self._start_times[tag]
if tag not in self._total_elapsed_times:
self._total_elapsed_times[tag] = 0
self._total_elapsed_times[tag] += elapsed_time
return elapsed_time
def elapsed_time_in_sec(self, tag) -> float:
if tag not in self._total_elapsed_times:
return None
return self._total_elapsed_times[tag]
def reset(self, tag=None) -> None:
if tag is None:
self._start_times.clear()
self._total_elapsed_times.clear()
else:
self._start_times.pop(tag, None)
self._total_elapsed_times.pop(tag, None)
def summary(self):
logger.info("Profile Results")
for tag, elapsed_time in self._total_elapsed_times.items():
logger.info(f" - {tag.ljust(30, '.')}: {elapsed_time:.6f} (sec)")
_default_timer = Timer()
def start(tag):
_default_timer.start(tag)
def stop(tag):
return _default_timer.stop(tag)
def elapsed_time_in_sec(tag):
return _default_timer.elapsed_time_in_sec(tag)
def reset(tag=None):
_default_timer.reset(tag=tag)
def summary():
_default_timer.summary()
MemUnitType = Literal["GiB", "MiB", "KiB"]
class PyNVMLContext:
def __enter__(self):
if pynvml is not None:
pynvml.nvmlInit()
def __exit__(self, type, value, traceback):
if pynvml is not None:
pynvml.nvmlShutdown()
if pynvml is not None:
with PyNVMLContext():
_device_get_memory_info_fn = partial(
pynvml.nvmlDeviceGetMemoryInfo,
version=pynvml.nvmlMemory_v2,
)
def host_memory_info(pid: Optional[int] = None) -> Tuple[int, int, int]:
if psutil is not None:
process = psutil.Process(pid)
# USS reports the amount of memory that would be freed if the process
# was terminated right now.
# https://psutil.readthedocs.io/en/latest/index.html#psutil.Process.memory_full_info
vmem = psutil.virtual_memory()
total_mem = vmem.total
free_mem = vmem.available
alloc_mem = process.memory_full_info().uss
return alloc_mem, free_mem, total_mem
return 0, 0, 0 # used, free, total
def device_memory_info(device: Optional[Union[torch.device, int]] = None) -> Tuple[int, int, int]:
if pynvml is not None:
if device is None:
device = torch.cuda.current_device()
index = device.index if isinstance(device, torch.device) else device
with PyNVMLContext():
handle = pynvml.nvmlDeviceGetHandleByIndex(index)
mem_info = _device_get_memory_info_fn(handle)
return mem_info.used, mem_info.free, mem_info.total
return 0, 0, 0 # used, free, total
def bytes_to_target_unit(mem_bytes: int, unit: MemUnitType) -> float:
units = {"GiB": 1 << 30, "MiB": 1 << 20, "KiB": 1 << 10}
_rename_map = {"GB": "GiB", "MB": "MiB", "KB": "KiB"}
if unit not in units:
unit = _rename_map[unit]
return float(mem_bytes) / units[unit]
def _format(mem_bytes: int, unit: MemUnitType) -> str:
mem_usage = bytes_to_target_unit(mem_bytes, unit)
return f"{mem_usage:.4f} ({unit})"
def _print_mem_message(msg: str, tag: Optional[str] = None):
if tag:
msg = f"{tag} - {msg}"
logger.info(f"[MemUsage] {msg}")
def print_host_memory_usage(tag: Optional[str] = None, unit: MemUnitType = "GiB"):
if psutil is None:
return
alloc_mem, _, _ = host_memory_info()
msg = f"Allocated Host Memory {_format(alloc_mem, unit)}"
_print_mem_message(msg, tag)
def print_device_memory_usage(
tag: Optional[str] = None,
unit: MemUnitType = "GiB",
device: Optional[Union[torch.device, int]] = None,
):
alloc_mem, _, _ = device_memory_info(device)
msg = f"Allocated Device Memory {_format(alloc_mem, unit)}"
_print_mem_message(msg, tag)
def print_memory_usage(
tag: Optional[str] = None,
unit: MemUnitType = "GiB",
device: Optional[Union[torch.device, int]] = None,
):
alloc_host_mem, _, _ = host_memory_info()
alloc_device_mem, _, _ = device_memory_info(device=device)
msg = (
f"Allocated Memory: Host {_format(alloc_host_mem, unit)} "
f"Device {_format(alloc_device_mem, unit)}"
)
_print_mem_message(msg, tag)
@_is_building
def check_gpt_mem_usage(
engine,
kv_dtype,
use_gpt_attention_plugin,
paged_kv_cache,
max_batch_size,
max_beam_width,
max_seq_len,
local_num_kv_heads,
head_size,
num_layers,
) -> int:
# Get the amount of memory
runtime = trt.Runtime(logger.trt_logger)
# 1. TensorRT engine activation memory
activation_size = 0
try:
cuda_engine = runtime.deserialize_cuda_engine(engine)
assert cuda_engine is not None
activation_size = cuda_engine.device_memory_size_v2 / 1024 / 1024
del cuda_engine
except Exception:
logger.warning(f"Exception when deserializing engine: {traceback.format_exc()}")
logger.warning("Activation memory size will be regarded as 0.")
logger.info(f"Activation memory size: {activation_size:.2f} MiB")
# 2. Weights
weights_size = bytes_to_target_unit(engine.nbytes, "MiB")
logger.info(f"Weights memory size: {weights_size:.2f} MiB")
# 3. Estimated max KV Cache size
kv_cache_size = (
max_batch_size
* max_beam_width
* 2
* local_num_kv_heads
* max_seq_len
* head_size
* num_layers
* kv_dtype.itemsize
)
# without plugin, we need two set of kv cache buffers,
# one for inputs, and the other for outputs.
if not use_gpt_attention_plugin:
kv_cache_size *= 2
kv_cache_size = bytes_to_target_unit(kv_cache_size, "MiB")
logger.info(f"Max KV Cache memory size: {kv_cache_size:.2f} MiB")
# Estimated total amount of memory
est_memory_size = activation_size + weights_size + kv_cache_size
logger.info(f"Estimated max memory usage on runtime: {est_memory_size:.2f} MiB")
_, _, total_mem = device_memory_info(torch.cuda.current_device())
total_mem = bytes_to_target_unit(total_mem, "MiB")
if est_memory_size > total_mem:
logger.warning(
f"Engine is successfully built, but GPU Memory ({total_mem:.2f} MB)"
" may not be enough when running inference on max shape."
)
if paged_kv_cache:
logger.warning(
"Since paged_kv_cache is enabled, the max KV Cache "
"memory size is a estimate for very extreme cases, "
"it's possible that most cases won't meet OOM."
)
else:
logger.warning(
"Enabling `--paged_kv_cache` could help reduce the GPU memory usage on runtime."
)
return est_memory_size