mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Altair-Alpha <62340011+Altair-Alpha@users.noreply.github.com>
81 lines
3.0 KiB
Python
81 lines
3.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import onnx
|
|
import tensorrt as trt
|
|
from onnx import TensorProto, helper
|
|
|
|
|
|
def trt_dtype_to_onnx(dtype):
|
|
if dtype == trt.float16:
|
|
return TensorProto.DataType.FLOAT16
|
|
if dtype == trt.bfloat16:
|
|
return TensorProto.DataType.BFLOAT16
|
|
elif dtype == trt.float32:
|
|
return TensorProto.DataType.FLOAT
|
|
elif dtype == trt.int32:
|
|
return TensorProto.DataType.INT32
|
|
elif dtype == trt.int64:
|
|
return TensorProto.DataType.INT64
|
|
elif dtype == trt.bool:
|
|
return TensorProto.DataType.BOOL
|
|
else:
|
|
raise TypeError("%s is not supported" % dtype)
|
|
|
|
|
|
def to_onnx(network, path, name: str = None):
|
|
if name is None:
|
|
name = "debug_graph"
|
|
inputs = []
|
|
for i in range(network.num_inputs):
|
|
network_input = network.get_input(i)
|
|
inputs.append(
|
|
helper.make_tensor_value_info(
|
|
network_input.name, trt_dtype_to_onnx(network_input.dtype),
|
|
list(network_input.shape)))
|
|
|
|
outputs = []
|
|
for i in range(network.num_outputs):
|
|
network_output = network.get_output(i)
|
|
outputs.append(
|
|
helper.make_tensor_value_info(
|
|
network_output.name, trt_dtype_to_onnx(network_output.dtype),
|
|
list(network_output.shape)))
|
|
|
|
nodes = []
|
|
for i in range(network.num_layers):
|
|
layer = network.get_layer(i)
|
|
layer_inputs = []
|
|
for j in range(layer.num_inputs):
|
|
ipt = layer.get_input(j)
|
|
if ipt is not None:
|
|
layer_inputs.append(layer.get_input(j).name)
|
|
layer_outputs = [
|
|
layer.get_output(j).name for j in range(layer.num_outputs)
|
|
]
|
|
nodes.append(
|
|
helper.make_node(str(layer.type),
|
|
name=layer.name,
|
|
inputs=layer_inputs,
|
|
outputs=layer_outputs,
|
|
domain="com.nvidia"))
|
|
|
|
onnx_model = helper.make_model(helper.make_graph(nodes,
|
|
name,
|
|
inputs,
|
|
outputs,
|
|
initializer=None),
|
|
producer_name='NVIDIA')
|
|
onnx.save(onnx_model, path)
|