mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
429 lines
15 KiB
Python
429 lines
15 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import signal
|
|
import subprocess
|
|
import time
|
|
|
|
import pytest
|
|
import requests
|
|
|
|
from tensorrt_llm.logger import logger
|
|
|
|
# Configuration file paths
|
|
EXAMPLES_DIR = "examples/disaggregated"
|
|
CLIENTS_DIR = f"{EXAMPLES_DIR}/clients"
|
|
CONTEXT_CONFIG_FILE = f"{EXAMPLES_DIR}/context_extra-llm-api-config.yml"
|
|
GENERATION_CONFIG_FILE = f"{EXAMPLES_DIR}/gen_extra-llm-api-config.yml"
|
|
ETCD_CONFIG_FILE = f"{EXAMPLES_DIR}/etcd_config.yaml"
|
|
DISAGG_CONFIG_FILE = f"{EXAMPLES_DIR}/disagg_config.yaml"
|
|
CLIENT_SCRIPT_FILE = f"{CLIENTS_DIR}/disagg_client.py"
|
|
PROMPTS_FILE = f"{CLIENTS_DIR}/prompts.json"
|
|
|
|
|
|
def kill_automated_disaggregated_processes():
|
|
"""Kill any existing automated disaggregated processes."""
|
|
try:
|
|
subprocess.run(['pkill', '-9', '-f', 'trtllm-serve'], check=False)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def cleanup_automated_output_files():
|
|
"""Clean up output files from previous runs."""
|
|
for file in [
|
|
'output.json', 'output_streaming.json', 'output_workers.log',
|
|
'output_disagg.log'
|
|
]:
|
|
try:
|
|
os.remove(file)
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
def start_context_server(config,
|
|
gpu_id: int,
|
|
port: int,
|
|
env=None) -> subprocess.Popen:
|
|
"""Start a context server on specified GPU and port."""
|
|
cmd = [
|
|
"trtllm-serve", config['model_path'], "--host", "localhost", "--port",
|
|
str(port), "--config", f"./{CONTEXT_CONFIG_FILE}",
|
|
"--metadata_server_config_file", ETCD_CONFIG_FILE, "--server_role",
|
|
"CONTEXT"
|
|
]
|
|
|
|
server_env = env.copy() if env else os.environ.copy()
|
|
server_env["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
|
|
server_env["TRTLLM_USE_UCX_KVCACHE"] = "1"
|
|
|
|
logger.info(f"Starting CONTEXT server on GPU {gpu_id} (port {port})...")
|
|
process = subprocess.Popen(cmd,
|
|
env=server_env,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
bufsize=1)
|
|
return process
|
|
|
|
|
|
def start_generation_server(config,
|
|
gpu_id: int,
|
|
port: int,
|
|
env=None) -> subprocess.Popen:
|
|
"""Start a generation server on specified GPU and port."""
|
|
cmd = [
|
|
"trtllm-serve", config['model_path'], "--host", "localhost", "--port",
|
|
str(port), "--config", f"./{GENERATION_CONFIG_FILE}",
|
|
"--metadata_server_config_file", ETCD_CONFIG_FILE, "--server_role",
|
|
"GENERATION"
|
|
]
|
|
|
|
server_env = env.copy() if env else os.environ.copy()
|
|
server_env["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
|
|
server_env["TRTLLM_USE_UCX_KVCACHE"] = "1"
|
|
|
|
logger.info(f"Starting GENERATION server on GPU {gpu_id} (port {port})...")
|
|
process = subprocess.Popen(cmd,
|
|
env=server_env,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
bufsize=1)
|
|
return process
|
|
|
|
|
|
def start_disaggregated_service(config, env=None) -> subprocess.Popen:
|
|
"""Launch the disaggregated service."""
|
|
cmd = [
|
|
"trtllm-serve", "disaggregated", "-c", DISAGG_CONFIG_FILE, "-m",
|
|
ETCD_CONFIG_FILE
|
|
]
|
|
|
|
logger.info("Launching disaggregated service...")
|
|
process = subprocess.Popen(cmd,
|
|
env=env,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
bufsize=1)
|
|
return process
|
|
|
|
|
|
def wait_for_server_health(port: int, timeout: int = 120) -> bool:
|
|
"""Wait for server to be healthy by checking /health endpoint."""
|
|
url = f"http://localhost:{port}/health"
|
|
start_time = time.time()
|
|
logger.info(f"Waiting for server on port {port} to be healthy...")
|
|
|
|
while time.time() - start_time < timeout:
|
|
try:
|
|
response = requests.get(url, timeout=5)
|
|
if response.status_code == 200:
|
|
logger.info(f"Server on port {port} is healthy")
|
|
return True
|
|
except requests.RequestException:
|
|
pass
|
|
time.sleep(2)
|
|
|
|
logger.error(f"Timed out waiting for server on port {port}")
|
|
return False
|
|
|
|
|
|
def run_client_test(config, env=None) -> bool:
|
|
"""Run the disaggregated client test."""
|
|
cmd = [
|
|
"python3", f"./{CLIENT_SCRIPT_FILE}", "-c", DISAGG_CONFIG_FILE, "-p",
|
|
f"./{PROMPTS_FILE}"
|
|
]
|
|
|
|
logger.info("Running disaggregated client test...")
|
|
result = subprocess.run(cmd,
|
|
env=env,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True)
|
|
|
|
if result.returncode == 0:
|
|
logger.info("Client test succeeded")
|
|
logger.info(f"Client output: {result.stdout}")
|
|
return True
|
|
else:
|
|
logger.error(f"Client test failed with return code {result.returncode}")
|
|
logger.error(f"Error output: {result.stderr}")
|
|
logger.error(f"Standard output: {result.stdout}")
|
|
return False
|
|
|
|
|
|
def kill_server_by_port(port: int) -> bool:
|
|
"""Find and kill a process by port using lsof."""
|
|
try:
|
|
# Find PID using port
|
|
cmd = ["lsof", "-t", f"-i:{port}"]
|
|
result = subprocess.run(cmd, stdout=subprocess.PIPE, text=True)
|
|
|
|
if result.stdout.strip():
|
|
pid = int(result.stdout.strip())
|
|
os.kill(pid, signal.SIGKILL)
|
|
logger.info(f"Killed process {pid} on port {port}")
|
|
return True
|
|
else:
|
|
logger.warning(f"No process found on port {port}")
|
|
return False
|
|
except Exception as e:
|
|
logger.error(f"Error killing process on port {port}: {e}")
|
|
return False
|
|
|
|
|
|
def cleanup_processes(processes):
|
|
"""Kill all started processes."""
|
|
logger.info("Cleaning up all processes...")
|
|
|
|
for name, process in processes.items():
|
|
if process.poll() is None: # Still running
|
|
logger.info(f"Terminating {name} (PID: {process.pid})")
|
|
try:
|
|
process.terminate()
|
|
process.wait(timeout=5)
|
|
except (subprocess.TimeoutExpired, ProcessLookupError):
|
|
logger.warning(f"Force killing {name} (PID: {process.pid})")
|
|
try:
|
|
process.kill()
|
|
except ProcessLookupError:
|
|
pass
|
|
|
|
|
|
def start_etcd_server(working_dir, env=None) -> subprocess.Popen:
|
|
"""Start etcd server."""
|
|
cmd = ["etcd"]
|
|
|
|
logger.info("Starting etcd server...")
|
|
process = subprocess.Popen(cmd,
|
|
env=env,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True,
|
|
bufsize=1,
|
|
cwd=working_dir)
|
|
return process
|
|
|
|
|
|
def cleanup_etcd_data(env=None):
|
|
"""Clean up etcd data using etcdctl."""
|
|
cmd = ["etcdctl", "del", "--prefix", "trtllm/"]
|
|
|
|
logger.info("Cleaning etcd data...")
|
|
result = subprocess.run(cmd,
|
|
env=env,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
text=True)
|
|
|
|
if result.returncode == 0:
|
|
logger.info("Successfully cleaned etcd data")
|
|
else:
|
|
logger.warning(f"Failed to clean etcd data: {result.stderr}")
|
|
|
|
|
|
def create_config_files(config):
|
|
"""Create necessary configuration files"""
|
|
# Create context config file
|
|
context_config_content = """pytorch_backend_config:
|
|
disable_overlap_scheduler: True
|
|
cache_transceiver_config:
|
|
backend: "DEFAULT"
|
|
max_tokens_in_buffer: 2048"""
|
|
|
|
with open(CONTEXT_CONFIG_FILE, 'w') as file:
|
|
file.write(context_config_content)
|
|
|
|
# Create generation config file
|
|
generation_config_content = """cache_transceiver_config:
|
|
backend: "DEFAULT"
|
|
max_tokens_in_buffer: 2048"""
|
|
|
|
with open(GENERATION_CONFIG_FILE, 'w') as file:
|
|
file.write(generation_config_content)
|
|
|
|
# Create etcd config file
|
|
etcd_config_content = """server_type: "etcd"
|
|
hostname: "localhost"
|
|
port: 2379
|
|
health_check_timeout: 5.0"""
|
|
|
|
with open(ETCD_CONFIG_FILE, 'w') as file:
|
|
file.write(etcd_config_content)
|
|
|
|
disagg_config_content = """hostname: localhost
|
|
port: 8000
|
|
backend: pytorch
|
|
context_servers:
|
|
num_instances: 1
|
|
urls:
|
|
- "localhost:8001"
|
|
generation_servers:
|
|
num_instances: 1
|
|
urls:
|
|
- "localhost:8002"
|
|
"""
|
|
|
|
with open(DISAGG_CONFIG_FILE, 'w') as file:
|
|
file.write(disagg_config_content)
|
|
|
|
return True
|
|
|
|
|
|
def run_automated_disaggregated_test(example_dir, env=None, cwd=None):
|
|
"""Run automated disaggregated test with given configuration."""
|
|
kill_automated_disaggregated_processes()
|
|
cleanup_automated_output_files()
|
|
|
|
config = {"model_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"}
|
|
|
|
# Create configuration files
|
|
create_config_files(config)
|
|
processes = {}
|
|
|
|
try:
|
|
# Step 1: Start etcd server
|
|
logger.info("Step 1: Starting etcd server...")
|
|
processes["etcd"] = start_etcd_server(".", env=env)
|
|
time.sleep(5) # Give etcd time to start
|
|
|
|
# Step 2: Clean etcd data
|
|
logger.info("Step 2: Cleaning etcd data...")
|
|
cleanup_etcd_data(env=env)
|
|
|
|
# Step 3: Start context server on GPU 0 (port 8001)
|
|
logger.info("Step 3: Starting context server on GPU 0 (port 8001)...")
|
|
processes["context_8001"] = start_context_server(config,
|
|
gpu_id=0,
|
|
port=8001,
|
|
env=env)
|
|
|
|
# Step 4: Start generation server on GPU 1 (port 8002)
|
|
logger.info(
|
|
"Step 4: Starting generation server on GPU 1 (port 8002)...")
|
|
processes["generation_8002"] = start_generation_server(config,
|
|
gpu_id=1,
|
|
port=8002,
|
|
env=env)
|
|
|
|
# Step 5: Wait till gen and context ready
|
|
logger.info(
|
|
"Step 5: Waiting for context and generation servers to be ready...")
|
|
if not wait_for_server_health(port=8001):
|
|
logger.error("Context server on port 8001 failed to start")
|
|
return False
|
|
if not wait_for_server_health(port=8002):
|
|
logger.error("Generation server on port 8002 failed to start")
|
|
return False
|
|
|
|
# Step 6: Start disaggregated service
|
|
logger.info("Step 6: Starting disaggregated service...")
|
|
processes["disagg_service"] = start_disaggregated_service(config,
|
|
env=env)
|
|
|
|
# Step 7: Wait for disaggregated service and run first client test
|
|
logger.info(
|
|
"Step 7: Waiting for disaggregated service and running first client test..."
|
|
)
|
|
if not wait_for_server_health(port=8000):
|
|
logger.error("Disaggregated service failed to start")
|
|
return False
|
|
|
|
first_test_success = run_client_test(config, env=env)
|
|
if not first_test_success:
|
|
logger.error("First client test failed")
|
|
return False
|
|
|
|
# Step 8: Start second context server on GPU 2 (port 8003)
|
|
logger.info(
|
|
"Step 8: Starting second context server on GPU 2 (port 8003)...")
|
|
processes["context_8003"] = start_context_server(config,
|
|
gpu_id=2,
|
|
port=8003,
|
|
env=env)
|
|
|
|
# Step 9: Wait till ready and then 10 seconds, run second client test
|
|
logger.info(
|
|
"Step 9: Waiting for second context server and running second client test..."
|
|
)
|
|
if not wait_for_server_health(port=8003):
|
|
logger.error("Second context server on port 8003 failed to start")
|
|
return False
|
|
|
|
logger.info("Waiting additional 10 seconds for system stabilization...")
|
|
time.sleep(10)
|
|
|
|
second_test_success = run_client_test(config, env=env)
|
|
if not second_test_success:
|
|
logger.error("Second client test failed")
|
|
return False
|
|
|
|
# Step 10: Kill 8001 process (first context server)
|
|
logger.info("Step 10: Killing first context server (port 8001)...")
|
|
if "context_8001" in processes:
|
|
process = processes["context_8001"]
|
|
if process.poll() is None:
|
|
process.terminate()
|
|
try:
|
|
process.wait(timeout=10)
|
|
except subprocess.TimeoutExpired:
|
|
process.kill()
|
|
kill_server_by_port(8001)
|
|
|
|
# Step 11: Wait a few seconds and run final client test
|
|
logger.info(
|
|
"Step 11: Waiting a few seconds and running final client test...")
|
|
time.sleep(5)
|
|
|
|
final_test_success = run_client_test(config, env=env)
|
|
if not final_test_success:
|
|
logger.error("Final client test failed")
|
|
return False
|
|
|
|
logger.info("✅ All automated disaggregated tests passed successfully!")
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.exception(f"Error during automated test: {e}")
|
|
return False
|
|
finally:
|
|
cleanup_processes(processes)
|
|
kill_automated_disaggregated_processes()
|
|
|
|
|
|
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
|
|
indirect=True)
|
|
def test_automated_disaggregated_complete(disaggregated_test_root,
|
|
disaggregated_example_root, llm_venv,
|
|
llama_model_root):
|
|
src_dst_dict = {
|
|
llama_model_root:
|
|
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
|
}
|
|
for src, dst in src_dst_dict.items():
|
|
if not os.path.islink(dst):
|
|
os.makedirs(os.path.dirname(dst), exist_ok=True)
|
|
os.symlink(src, dst, target_is_directory=True)
|
|
|
|
success = run_automated_disaggregated_test(
|
|
disaggregated_example_root,
|
|
env=llm_venv._new_env,
|
|
cwd=llm_venv.get_working_directory())
|
|
assert success, "Automated disaggregated test failed"
|