mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
923 lines
38 KiB
Python
923 lines
38 KiB
Python
import argparse
|
||
import copy
|
||
import functools
|
||
import json
|
||
import os
|
||
import time
|
||
import traceback
|
||
from collections import defaultdict
|
||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||
from typing import Dict, Optional
|
||
|
||
import numpy as np
|
||
import safetensors
|
||
import torch
|
||
import torch.nn as nn
|
||
from tqdm import tqdm
|
||
from transformers import AutoTokenizer, MptConfig, MptForCausalLM
|
||
from transformers.pytorch_utils import Conv1D
|
||
|
||
import tensorrt_llm
|
||
from tensorrt_llm.mapping import Mapping
|
||
from tensorrt_llm.models.convert_utils import (generate_int8, get_weight,
|
||
load_calib_dataset, smooth_gemm,
|
||
split)
|
||
from tensorrt_llm.quantization import QuantAlgo
|
||
|
||
|
||
def parse_arguments():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--model_dir', type=str, default=None)
|
||
parser.add_argument('--tp_size',
|
||
type=int,
|
||
default=1,
|
||
help='N-way tensor parallelism size')
|
||
parser.add_argument('--pp_size',
|
||
type=int,
|
||
default=1,
|
||
help='N-way pipeline parallelism size')
|
||
parser.add_argument('--dtype',
|
||
type=str,
|
||
default='float16',
|
||
choices=['float32', 'bfloat16', 'float16'])
|
||
parser.add_argument('--logits_dtype',
|
||
type=str,
|
||
default='float32',
|
||
choices=['float16', 'float32'])
|
||
parser.add_argument(
|
||
'--use_parallel_embedding',
|
||
action="store_true",
|
||
default=False,
|
||
help=
|
||
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
||
)
|
||
parser.add_argument(
|
||
'--embedding_sharding_dim',
|
||
type=int,
|
||
default=0,
|
||
choices=[0, 1],
|
||
help=
|
||
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
||
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
||
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
||
)
|
||
|
||
parser.add_argument(
|
||
'--calib_dataset',
|
||
type=str,
|
||
default='ccdv/cnn_dailymail',
|
||
help=
|
||
"The huggingface dataset name or the local directory of the dataset for calibration."
|
||
)
|
||
parser.add_argument(
|
||
"--calibrate_kv_cache",
|
||
"-kv",
|
||
action="store_true",
|
||
help=
|
||
"Generate scaling factors for KV cache. Used for storing KV cache in int8."
|
||
)
|
||
parser.add_argument(
|
||
'--per_channel',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use a single static scaling factor for the GEMM\'s result. '
|
||
'per_channel instead uses a different static scaling factor for each channel. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
'--per_token',
|
||
default=False,
|
||
action="store_true",
|
||
help=
|
||
'By default, we use a single static scaling factor to scale activations in the int8 range. '
|
||
'per_token chooses at run time, and for each token, a custom scaling factor. '
|
||
'The latter is usually more accurate, but a little slower.')
|
||
parser.add_argument(
|
||
"--smoothquant",
|
||
"-sq",
|
||
type=float,
|
||
default=None,
|
||
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
|
||
" to Smoothquant the model, and output int8 weights."
|
||
" A good first try is 0.5. Must be in [0, 1]")
|
||
parser.add_argument("--dataset_cache_dir",
|
||
type=str,
|
||
default=None,
|
||
help="cache dir to load the hugging face dataset")
|
||
parser.add_argument(
|
||
'--use_weight_only',
|
||
default=False,
|
||
action="store_true",
|
||
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
||
'See --weight_only_precision to set the precision')
|
||
parser.add_argument(
|
||
'--weight_only_precision',
|
||
const='int8',
|
||
type=str,
|
||
nargs='?',
|
||
default='int8',
|
||
choices=['int8', 'int4'],
|
||
help=
|
||
'Define the precision for the weights when using weight-only quantization.'
|
||
'You must also use --use_weight_only for that argument to have an impact.'
|
||
)
|
||
parser.add_argument('--output_dir',
|
||
type=str,
|
||
default='tllm_checkpoint',
|
||
help='The path to save the TensorRT-LLM checkpoint')
|
||
parser.add_argument(
|
||
'--workers',
|
||
type=int,
|
||
default=1,
|
||
help='The number of workers for converting checkpoint in parallel')
|
||
args = parser.parse_args()
|
||
|
||
return args
|
||
|
||
|
||
@torch.no_grad()
|
||
def capture_activation_range(model,
|
||
tokenizer,
|
||
dataset,
|
||
num_samples=1,
|
||
seq_len=512):
|
||
model.eval()
|
||
device = next(model.parameters()).device
|
||
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
||
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
|
||
def stat_tensor(name, tensor, act_scales, key):
|
||
hidden_dim = tensor.shape[-1]
|
||
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
||
comming_max = torch.max(tensor, dim=0)[0].float()
|
||
|
||
if act_scales[name][key] is None:
|
||
act_scales[name][key] = comming_max
|
||
else:
|
||
act_scales[name][key] = torch.max(act_scales[name][key],
|
||
comming_max)
|
||
|
||
def stat_input_hook(m, x, y, name):
|
||
if isinstance(x, tuple):
|
||
x = x[0]
|
||
stat_tensor(name, x, act_scales, "x")
|
||
stat_tensor(name, y, act_scales, "y")
|
||
|
||
if act_scales[name]["w"] is None:
|
||
act_scales[name]["w"] = m.weight.abs().clip(
|
||
1e-8, None).max(dim=1)[0].float()
|
||
|
||
hooks = []
|
||
for name, m in model.named_modules():
|
||
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
||
hooks.append(
|
||
m.register_forward_hook(
|
||
functools.partial(stat_input_hook, name=name)))
|
||
|
||
for i in tqdm(range(num_samples), desc="calibrating model"):
|
||
datapoint = dataset[i:i + 1]
|
||
line = copy.copy(datapoint)
|
||
line[0] = line[0] + ' TL;DR: '
|
||
line[0] = line[0].strip()
|
||
line[0] = line[0].replace(" n't", "n't")
|
||
input_ids = tokenizer(line,
|
||
return_tensors="pt",
|
||
max_length=seq_len,
|
||
padding=True,
|
||
truncation=True).input_ids.to(device)
|
||
model(input_ids)
|
||
|
||
for h in hooks:
|
||
h.remove()
|
||
|
||
return act_scales
|
||
|
||
|
||
@torch.no_grad()
|
||
def smooth_mpt_model(model, scales, alpha, mpt_qkv_para, mpt_smoother):
|
||
# Smooth the activation and weights with smoother = $\diag{s}$
|
||
for name, module in model.named_modules():
|
||
if not isinstance(module, type(model.transformer.blocks[0])):
|
||
continue
|
||
# qkv_proj
|
||
layer_name_qkv = name + ".attn.Wqkv"
|
||
weight = module.attn.Wqkv.weight
|
||
smoother = smooth_gemm(weight, scales[layer_name_qkv]["x"],
|
||
module.norm_1.weight, module.norm_1.bias, alpha)
|
||
scales[layer_name_qkv]["x"] = scales[layer_name_qkv]["x"] / smoother
|
||
scales[layer_name_qkv]["w"] = weight.abs().max(dim=1)[0]
|
||
# see transpose_weights function
|
||
mpt_qkv_para[layer_name_qkv] = weight.transpose(0, 1)
|
||
|
||
# =================================================================
|
||
layer_name = name + ".attn.out_proj"
|
||
smoother = smooth_gemm(module.attn.out_proj.weight,
|
||
scales[layer_name]["x"], None, None, alpha)
|
||
mpt_smoother[layer_name] = smoother.float()
|
||
|
||
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
||
scales[layer_name]["w"] = module.attn.out_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
# ==================================================================
|
||
fc1_layer_name = name + ".ffn.up_proj"
|
||
|
||
smoother = smooth_gemm(module.ffn.up_proj.weight,
|
||
scales[fc1_layer_name]["x"],
|
||
module.norm_2.weight, module.norm_2.bias, alpha)
|
||
|
||
scales[fc1_layer_name]["x"] = scales[fc1_layer_name]["x"] / smoother
|
||
scales[fc1_layer_name]["w"] = module.ffn.up_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
# ==================================================================
|
||
layer_name = name + ".ffn.down_proj"
|
||
smoother = smooth_gemm(module.ffn.down_proj.weight,
|
||
scales[layer_name]["x"], None, None, alpha)
|
||
mpt_smoother[layer_name] = smoother.float()
|
||
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
|
||
scales[layer_name]["w"] = module.ffn.down_proj.weight.abs().max(
|
||
dim=1)[0]
|
||
|
||
|
||
def get_tllm_linear_sq_weight(vals,
|
||
prefix,
|
||
shape,
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=False,
|
||
per_channel=False,
|
||
last_prefix=None,
|
||
bias=None,
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=0,
|
||
cat_dim=0,
|
||
multi_query_mode=False):
|
||
results = {}
|
||
|
||
def multi_query_split(data, local_dim, head_size, tp_size, cur_rank):
|
||
q, k, v = np.split(data, [local_dim, local_dim + head_size], axis=-1)
|
||
q_split = np.split(q, tp_size, axis=-1)
|
||
k_split = np.split(k, tp_size, axis=-1)
|
||
v_split = np.split(v, tp_size, axis=-1)
|
||
return [
|
||
np.concatenate((q_split[ii], k_split[ii], v_split[ii]), axis=-1)
|
||
for ii in range(tp_size)
|
||
][cur_rank]
|
||
|
||
col_shape = shape if (is_qkv or per_channel) else [1, 1]
|
||
|
||
if per_token:
|
||
if per_channel:
|
||
original_weights = np.array(vals["weight.int8.col"])
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
local_dim = original_weights.shape[0]
|
||
head_size = (original_weights.shape[1] - local_dim) // 2
|
||
|
||
if multi_query_mode:
|
||
cur_weights = multi_query_split(original_weights, local_dim,
|
||
head_size, tensor_parallel, rank)
|
||
else:
|
||
cur_weights = np.split(original_weights,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
if smoother_value is None:
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([1.0], dtype=np.float32))
|
||
|
||
if per_channel:
|
||
cur_per_channel_value = vals["scale_w_quant_orig.col"]
|
||
if smoother_value is None:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_w_quant_orig.col"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(
|
||
vals["scale_w_quant_orig.col"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
else:
|
||
cur_per_channel_value = vals["scale_w_quant_orig"]
|
||
if is_qkv:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_w_quant_orig"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(vals["scale_w_quant_orig"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array(cur_per_channel_value,
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
else:
|
||
if per_channel:
|
||
original_weights = np.array(vals["weight.int8.col"])
|
||
else:
|
||
original_weights = np.array(vals["weight.int8"])
|
||
local_dim = original_weights.shape[0]
|
||
head_size = (original_weights.shape[1] - local_dim) // 2
|
||
|
||
if multi_query_mode:
|
||
cur_weights = multi_query_split(original_weights, local_dim,
|
||
head_size, tensor_parallel, rank)
|
||
else:
|
||
cur_weights = np.split(original_weights,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
if is_qkv:
|
||
hidden_dim = cur_weights.shape[0]
|
||
cur_weights = cur_weights.reshape(hidden_dim, -1)
|
||
results[prefix +
|
||
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
|
||
|
||
if per_channel:
|
||
cur_per_channel_value = vals["scale_y_accum_quant.col"]
|
||
if smoother_value is None:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_y_accum_quant.col"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(
|
||
vals["scale_y_accum_quant.col"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
else:
|
||
cur_per_channel_value = vals["scale_y_accum_quant"]
|
||
# QKV is always per_channel
|
||
if is_qkv:
|
||
if multi_query_mode:
|
||
cur_per_channel_value = multi_query_split(
|
||
vals["scale_y_accum_quant"], local_dim, head_size,
|
||
tensor_parallel, rank)
|
||
else:
|
||
cur_per_channel_value = np.split(
|
||
vals["scale_y_accum_quant"],
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
|
||
results[prefix + 'per_channel_scale'] = torch.from_numpy(
|
||
np.array([cur_per_channel_value],
|
||
dtype=np.float32).reshape(col_shape)).contiguous()
|
||
|
||
results[last_prefix] = torch.from_numpy(
|
||
np.array([vals['scale_x_orig_quant']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
results[prefix + 'act_scale'] = torch.from_numpy(
|
||
np.array([[vals["scale_y_quant_orig"]]],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
if smoother_value is not None:
|
||
cur_smoother_value = np.split(smoother_value,
|
||
tensor_parallel,
|
||
axis=cat_dim)[rank]
|
||
results[prefix + 'smoother'] = cur_smoother_value.reshape(
|
||
smoother_shape).contiguous().to(torch.float32)
|
||
|
||
if bias is not None:
|
||
results[prefix + 'bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
def split_qkv_tp(qkv, n_head, n_kv_heads, n_hidden, tensor_parallel, rank):
|
||
"""
|
||
Splits the QKV matrix according to tensor parallelism
|
||
"""
|
||
kv_head_size = n_kv_heads * (n_hidden // n_head)
|
||
q, k, v = torch.split(qkv, [n_hidden, kv_head_size, kv_head_size], dim=0)
|
||
q = split(q, tensor_parallel, rank, dim=0)
|
||
k = split(k, tensor_parallel, rank, dim=0)
|
||
v = split(v, tensor_parallel, rank, dim=0)
|
||
return torch.concatenate([q, k, v], dim=0).contiguous()
|
||
|
||
|
||
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
|
||
dim: int) -> torch.Tensor:
|
||
return split(weight, tp_size, rank, dim=dim)
|
||
|
||
|
||
def get_tllm_linear_weight(
|
||
weight: torch.Tensor,
|
||
prefix: str,
|
||
bias: Optional[torch.Tensor] = None,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
||
) -> Dict[str, torch.Tensor]:
|
||
results = {}
|
||
if use_weight_only:
|
||
v = weight.t().contiguous()
|
||
processed_torch_weights, torch_weight_scales = \
|
||
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v, plugin_weight_only_quant_type)
|
||
results[f'{prefix}.weight'] = processed_torch_weights
|
||
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
|
||
else:
|
||
results[f'{prefix}.weight'] = weight.contiguous()
|
||
|
||
if bias is not None:
|
||
results[f'{prefix}.bias'] = bias
|
||
|
||
return results
|
||
|
||
|
||
def get_tllm_param(
|
||
param: torch.Tensor,
|
||
name: str,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8
|
||
) -> Dict[str, torch.Tensor]:
|
||
results = {}
|
||
if name.endswith('.weight') and use_weight_only:
|
||
v = param.t().contiguous()
|
||
processed_torch_weights, torch_weight_scales = \
|
||
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
||
v, plugin_weight_only_quant_type)
|
||
results[name] = processed_torch_weights
|
||
results[name.replace('weight',
|
||
'per_channel_scale')] = torch_weight_scales
|
||
else:
|
||
results[name] = param
|
||
|
||
return results
|
||
|
||
|
||
def convert_hf_mpt_legacy(hf_model,
|
||
hf_config,
|
||
mapping,
|
||
rank=0,
|
||
dtype='float32',
|
||
use_parallel_embedding: bool = False,
|
||
sharding_dim: int = 0,
|
||
use_weight_only=False,
|
||
plugin_weight_only_quant_type='int8',
|
||
use_smooth_quant=False,
|
||
per_channel=False,
|
||
per_token=False,
|
||
int8_kv_cache=False,
|
||
act_range=[],
|
||
qkv_para=[],
|
||
smoother=[]):
|
||
weights = {}
|
||
tik = time.time()
|
||
tensor_parallel = mapping.tp_size
|
||
model_params = dict(hf_model.named_parameters())
|
||
dtype = getattr(torch, dtype)
|
||
num_attention_heads = hf_model.config.n_heads
|
||
hidden_size = hf_model.config.d_model
|
||
vocab_size = hf_model.config.vocab_size
|
||
num_key_value_heads = hf_config.attn_config['kv_n_heads'] if 'kv_n_heads' in hf_config.attn_config \
|
||
else hf_config.n_heads
|
||
multi_query_mode = (num_key_value_heads != num_attention_heads)
|
||
|
||
for l in range(hf_model.config.n_layers):
|
||
prefix = f'transformer.blocks.{l}.'
|
||
tllm_prex = f'transformer.layers.{l}.'
|
||
|
||
# attn.Wqkv -> attention.qkv
|
||
qkv_weight = get_weight(model_params, prefix + 'attn.Wqkv', dtype)
|
||
|
||
if use_smooth_quant:
|
||
qkv_out_dim = qkv_weight.shape[0]
|
||
qkv_weight = qkv_weight.t().numpy()
|
||
if not multi_query_mode:
|
||
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
||
int8_weights = generate_int8(qkv_weight,
|
||
act_range.get(prefix + 'attn.Wqkv'),
|
||
is_qkv=True,
|
||
multi_query_mode=multi_query_mode)
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(int8_weights,
|
||
tllm_prex + 'attention.qkv.',
|
||
[1, qkv_out_dim // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=True,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex +
|
||
'input_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=rank,
|
||
cat_dim=-1,
|
||
multi_query_mode=multi_query_mode))
|
||
else:
|
||
qkv_weight = split_qkv_tp(qkv_weight, num_attention_heads,
|
||
num_key_value_heads, hidden_size,
|
||
mapping.tp_size, mapping.tp_rank)
|
||
weights.update(
|
||
get_tllm_linear_weight(qkv_weight, tllm_prex + 'attention.qkv',
|
||
None, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
if int8_kv_cache:
|
||
qkv_weight = get_weight(model_params, prefix + 'attn.Wqkv', dtype)
|
||
qkv_weight = qkv_weight.t().numpy()
|
||
if not multi_query_mode:
|
||
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
|
||
int8_weights = generate_int8(qkv_weight,
|
||
act_range.get(prefix + 'attn.Wqkv'),
|
||
is_qkv=True,
|
||
multi_query_mode=multi_query_mode)
|
||
weights[tllm_prex +
|
||
'attention.kv_cache_scaling_factor'] = torch.from_numpy(
|
||
np.array([int8_weights['scale_y_quant_orig']],
|
||
dtype=np.float32)).contiguous()
|
||
|
||
# attn.out_proj -> attention.dense
|
||
attn_dense_weight = get_weight(model_params, prefix + 'attn.out_proj',
|
||
dtype)
|
||
if use_smooth_quant:
|
||
attn_dense_weight = attn_dense_weight.t().numpy()
|
||
int8_weights = generate_int8(
|
||
attn_dense_weight, act_range.get(prefix + 'attn.out_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'attention.dense.', [1, hidden_size],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex +
|
||
'attention.quantization_scaling_factor',
|
||
smoother_value=smoother[(prefix + 'attn.out_proj')],
|
||
smoother_shape=[1, hidden_size // tensor_parallel],
|
||
rank=rank,
|
||
cat_dim=0))
|
||
else:
|
||
attn_dense_w = split_matrix(attn_dense_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
weights.update(
|
||
get_tllm_linear_weight(attn_dense_w,
|
||
tllm_prex + 'attention.dense', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
# ffn.up_proj -> mlp.fc
|
||
mlp_fc_weight = get_weight(model_params, prefix + 'ffn.up_proj', dtype)
|
||
if use_smooth_quant:
|
||
mlp_fc_weight = mlp_fc_weight.t().numpy()
|
||
int8_weights = generate_int8(mlp_fc_weight,
|
||
act_range.get(prefix + 'ffn.up_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.fc.',
|
||
[1, 4 * hidden_size // tensor_parallel],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
|
||
smoother_value=None,
|
||
smoother_shape=None,
|
||
rank=rank,
|
||
cat_dim=-1))
|
||
else:
|
||
mlp_fc_weight = split_matrix(mlp_fc_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
weights.update(
|
||
get_tllm_linear_weight(mlp_fc_weight, tllm_prex + 'mlp.fc',
|
||
None, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
# ffn.down_proj -> mlp.proj
|
||
mlp_proj_weight = get_weight(model_params, prefix + 'ffn.down_proj',
|
||
dtype)
|
||
if use_smooth_quant:
|
||
mlp_proj_weight = mlp_proj_weight.t().numpy()
|
||
int8_weights = generate_int8(
|
||
mlp_proj_weight, act_range.get(prefix + 'ffn.down_proj'))
|
||
weights.update(
|
||
get_tllm_linear_sq_weight(
|
||
int8_weights,
|
||
tllm_prex + 'mlp.proj.', [1, hidden_size],
|
||
tensor_parallel,
|
||
is_qkv=False,
|
||
per_token=per_token,
|
||
per_channel=per_channel,
|
||
last_prefix=tllm_prex + 'mlp.quantization_scaling_factor',
|
||
smoother_value=smoother[prefix + 'ffn.down_proj'],
|
||
smoother_shape=[1, 4 * hidden_size // tensor_parallel],
|
||
rank=rank,
|
||
cat_dim=0))
|
||
else:
|
||
mlp_proj_weight = split_matrix(mlp_proj_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
weights.update(
|
||
get_tllm_linear_weight(mlp_proj_weight, tllm_prex + 'mlp.proj',
|
||
None, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
|
||
# input layer_norm
|
||
input_ln_weight = get_weight(model_params, prefix + 'norm_1', dtype)
|
||
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
||
|
||
# post layer_norm
|
||
post_ln_weight = get_weight(model_params, prefix + 'norm_2', dtype)
|
||
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
||
|
||
embed_w = get_weight(model_params, 'transformer.wte', dtype)
|
||
if mapping.is_first_pp_rank():
|
||
# Embedding
|
||
if not use_parallel_embedding:
|
||
weights['transformer.vocab_embedding.weight'] = embed_w
|
||
else:
|
||
if sharding_dim == 0:
|
||
assert vocab_size % mapping.tp_size == 0
|
||
else:
|
||
assert hidden_size % mapping.tp_size == 0
|
||
weights['transformer.vocab_embedding.weight'] = split_matrix(
|
||
embed_w, mapping.tp_size, mapping.tp_rank, sharding_dim)
|
||
if mapping.is_last_pp_rank():
|
||
# lm_head weight and bias
|
||
weights['lm_head.weight'] = split_matrix(embed_w.clone(),
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
ln_f_w = get_weight(model_params, 'transformer.norm_f', dtype)
|
||
# ln_f weight and bias
|
||
weights['transformer.ln_f.weight'] = ln_f_w
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
def convert_hf_mpt(hf_model: MptForCausalLM,
|
||
hf_config: MptConfig,
|
||
mapping: Mapping,
|
||
dtype: str = 'float32',
|
||
use_parallel_embedding: bool = False,
|
||
sharding_dim: int = 0,
|
||
use_weight_only: bool = False,
|
||
plugin_weight_only_quant_type: torch.dtype = torch.int8):
|
||
|
||
weights = {}
|
||
tik = time.time()
|
||
|
||
model_params = dict(hf_model.named_parameters())
|
||
dtype = getattr(torch, dtype)
|
||
num_hidden_layers = hf_config.n_layers
|
||
num_head = hf_config.n_heads
|
||
num_kv_heads = getattr(hf_config.attn_config, 'kv_n_heads',
|
||
hf_config.n_heads)
|
||
hidden_size = hf_config.d_model
|
||
vocab_size = hf_config.vocab_size
|
||
|
||
layers_range = mapping.pp_layers(num_hidden_layers)
|
||
for l in layers_range:
|
||
prefix = f'transformer.blocks.{l}'
|
||
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
|
||
# Attention QKV (no bias)
|
||
qkv_w = get_weight(model_params, f'{prefix}.attn.Wqkv', dtype)
|
||
qkv_w = split_qkv_tp(qkv_w, num_head, num_kv_heads, hidden_size,
|
||
mapping.tp_size, mapping.tp_rank)
|
||
weights.update(
|
||
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
# Attention dense (no bias)
|
||
attn_dense_weight = get_weight(model_params, f'{prefix}.attn.out_proj',
|
||
dtype)
|
||
attn_dense_w = split_matrix(attn_dense_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
weights.update(
|
||
get_tllm_linear_weight(attn_dense_w, f'{tllm_prex}.attention.dense',
|
||
None, use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
# MLP fc_in (no bias)
|
||
mlp_fc_weight = get_weight(model_params, f'{prefix}.ffn.up_proj', dtype)
|
||
mlp_fc_w = split_matrix(mlp_fc_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
weights.update(
|
||
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
# MLP fc_out (no bias)
|
||
mlp_proj_weight = get_weight(model_params, f'{prefix}.ffn.down_proj',
|
||
dtype)
|
||
mlp_proj_w = split_matrix(mlp_proj_weight,
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=1)
|
||
weights.update(
|
||
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj', None,
|
||
use_weight_only,
|
||
plugin_weight_only_quant_type))
|
||
# input layer_norm
|
||
input_ln_weight = get_weight(model_params, f'{prefix}.norm_1', dtype)
|
||
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
|
||
|
||
# post layer_norm
|
||
post_ln_weight = get_weight(model_params, f'{prefix}.norm_2', dtype)
|
||
weights[f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
|
||
|
||
embed_w = get_weight(model_params, 'transformer.wte', dtype)
|
||
if mapping.is_first_pp_rank():
|
||
# Embedding
|
||
if not use_parallel_embedding:
|
||
weights['transformer.vocab_embedding.weight'] = embed_w
|
||
else:
|
||
if sharding_dim == 0:
|
||
assert vocab_size % mapping.tp_size == 0
|
||
else:
|
||
assert hidden_size % mapping.tp_size == 0
|
||
weights['transformer.vocab_embedding.weight'] = split_matrix(
|
||
embed_w, mapping.tp_size, mapping.tp_rank, sharding_dim)
|
||
if mapping.is_last_pp_rank():
|
||
# lm_head weight and bias
|
||
weights['lm_head.weight'] = split_matrix(embed_w.clone(),
|
||
mapping.tp_size,
|
||
mapping.tp_rank,
|
||
dim=0)
|
||
ln_f_w = get_weight(model_params, 'transformer.norm_f', dtype)
|
||
# ln_f weight and bias
|
||
weights['transformer.ln_f.weight'] = ln_f_w
|
||
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Weights loaded. Total time: {t}')
|
||
return weights
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# TODO(qijun): Currently, the convert script depends on a torch op:
|
||
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
|
||
# which is included in tensorrt_llm Python package. Otherwise, the convert
|
||
# script does not need to import tensorrt_llm. Will remove it after reimplementing
|
||
# the op with PyTorch.
|
||
print(tensorrt_llm.__version__)
|
||
args = parse_arguments()
|
||
world_size = args.tp_size * args.pp_size
|
||
|
||
tik = time.time()
|
||
|
||
if not os.path.exists(args.output_dir):
|
||
os.makedirs(args.output_dir)
|
||
world_size = args.tp_size * args.pp_size
|
||
quant_algo = None
|
||
plugin_weight_only_quant_type = None
|
||
if args.use_weight_only and args.weight_only_precision == 'int8':
|
||
plugin_weight_only_quant_type = torch.int8
|
||
quant_algo = QuantAlgo.W8A16
|
||
elif args.use_weight_only and args.weight_only_precision == 'int4':
|
||
plugin_weight_only_quant_type = torch.quint4x2
|
||
quant_algo = QuantAlgo.W4A16
|
||
|
||
if args.smoothquant:
|
||
if args.per_token and args.per_channel:
|
||
quant_algo = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN
|
||
elif not args.per_token and not args.per_channel:
|
||
quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PLUGIN
|
||
elif not args.per_token and args.per_channel:
|
||
quant_algo = QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TENSOR_PLUGIN
|
||
elif args.per_token and not args.per_channel:
|
||
quant_algo = QuantAlgo.W8A8_SQ_PER_TENSOR_PER_TOKEN_PLUGIN
|
||
|
||
if args.calibrate_kv_cache:
|
||
kv_cache_quant_algo = QuantAlgo.INT8
|
||
else:
|
||
kv_cache_quant_algo = None
|
||
|
||
hf_config = MptConfig.from_pretrained(args.model_dir,
|
||
trust_remote_code=True)
|
||
num_kv_heads = getattr(hf_config.attn_config, 'kv_n_heads',
|
||
hf_config.n_heads)
|
||
config = {
|
||
'architecture': hf_config.architectures[0],
|
||
'dtype': args.dtype,
|
||
'logits_dtype': args.logits_dtype,
|
||
'vocab_size': hf_config.vocab_size,
|
||
'hidden_size': hf_config.d_model,
|
||
'intermediate_size': hf_config.d_model * 4,
|
||
'num_hidden_layers': hf_config.n_layers,
|
||
'num_attention_heads': hf_config.n_heads,
|
||
'num_key_value_heads': num_kv_heads,
|
||
'position_embedding_type': 'alibi',
|
||
'hidden_act': 'gelu',
|
||
'use_parallel_embedding': args.use_parallel_embedding,
|
||
'embedding_sharding_dim': args.embedding_sharding_dim,
|
||
'quantization': {
|
||
'quant_algo': quant_algo,
|
||
'kv_cache_quant_algo': kv_cache_quant_algo,
|
||
},
|
||
'mapping': {
|
||
'world_size': world_size,
|
||
'tp_size': args.tp_size,
|
||
'pp_size': args.pp_size,
|
||
},
|
||
'bias': (not hf_config.no_bias),
|
||
'clip_qkv': hf_config.attn_config.clip_qkv,
|
||
'alibi_bias_max': hf_config.attn_config.alibi_bias_max
|
||
}
|
||
|
||
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
||
json.dump(config, f, indent=4)
|
||
|
||
hf_model = MptForCausalLM.from_pretrained(args.model_dir,
|
||
device_map="auto",
|
||
torch_dtype=getattr(
|
||
torch, args.dtype))
|
||
|
||
act_range = {}
|
||
mpt_qkv_para = {}
|
||
# smoother for inputs of self_attn.o_proj and mlp.down_proj
|
||
mpt_smoother = {}
|
||
if args.smoothquant is not None or args.calibrate_kv_cache:
|
||
tokenizer = AutoTokenizer.from_pretrained(args.model_dir,
|
||
padding_side='left')
|
||
dataset = load_calib_dataset(args.calib_dataset,
|
||
cache_dir=args.dataset_cache_dir)
|
||
|
||
act_range = capture_activation_range(hf_model, tokenizer, dataset)
|
||
if args.smoothquant is not None:
|
||
smooth_mpt_model(hf_model, act_range, args.smoothquant,
|
||
mpt_qkv_para, mpt_smoother)
|
||
|
||
def covert_and_save(rank):
|
||
mapping = Mapping(world_size=world_size,
|
||
rank=rank,
|
||
tp_size=args.tp_size,
|
||
pp_size=args.pp_size)
|
||
|
||
if args.smoothquant is not None or args.calibrate_kv_cache:
|
||
weights = convert_hf_mpt_legacy(
|
||
hf_model,
|
||
hf_config,
|
||
mapping,
|
||
rank,
|
||
dtype=args.dtype,
|
||
use_parallel_embedding=args.use_parallel_embedding,
|
||
sharding_dim=args.embedding_sharding_dim,
|
||
use_weight_only=args.use_weight_only,
|
||
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
||
use_smooth_quant=(args.smoothquant is not None),
|
||
per_channel=args.per_channel,
|
||
per_token=args.per_token,
|
||
int8_kv_cache=args.calibrate_kv_cache,
|
||
act_range=act_range,
|
||
qkv_para=mpt_qkv_para,
|
||
smoother=mpt_smoother)
|
||
else:
|
||
weights = convert_hf_mpt(
|
||
hf_model,
|
||
hf_config,
|
||
mapping,
|
||
dtype=args.dtype,
|
||
use_parallel_embedding=args.use_parallel_embedding,
|
||
sharding_dim=args.embedding_sharding_dim,
|
||
use_weight_only=args.use_weight_only,
|
||
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
|
||
|
||
safetensors.torch.save_file(
|
||
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
||
|
||
if args.workers == 1:
|
||
for rank in range(world_size):
|
||
covert_and_save(rank)
|
||
else:
|
||
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
||
futures = [
|
||
p.submit(covert_and_save, rank) for rank in range(world_size)
|
||
]
|
||
exceptions = []
|
||
for future in as_completed(futures):
|
||
try:
|
||
future.result()
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
exceptions.append(e)
|
||
assert len(
|
||
exceptions
|
||
) == 0, "Checkpoint conversion failed, please check error log."
|
||
|
||
del hf_model
|
||
tok = time.time()
|
||
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
||
print(f'Total time of converting checkpoints: {t}')
|