TensorRT-LLMs/tensorrt_llm/inputs/registry.py
Sharan Chetlur 258c7540c0 open source 09df54c0cc99354a60bbc0303e3e8ea33a96bef0 (#2725)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

open source f8c0381a2bc50ee2739c3d8c2be481b31e5f00bd (#2736)

Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

Add note for blackwell (#2742)

Update the docs to workaround the extra-index-url issue (#2744)

update README.md (#2751)

Fix github io pages (#2761)

Update
2025-02-11 02:21:51 +00:00

102 lines
3.1 KiB
Python

from typing import Any, Dict, List, Optional, Protocol, Tuple, Type, TypeVar
from torch import nn
from ..sampling_params import SamplingParams
from .data import TextPrompt
N = TypeVar("N", bound=Type[nn.Module])
ExtraProcessedInputs = Dict[str, Any]
class InputProcessor(Protocol):
"""Protocol for InputProcessor classes."""
tokenizer: any
model_config: any
def __call__(
self, inputs: TextPrompt, sampling_params: SamplingParams
) -> Tuple[List[int], Optional[ExtraProcessedInputs]]:
"""Process the inputs to the model."""
...
class DefaultInputProcessor(InputProcessor):
"""Preprocess the inputs to the model."""
def __init__(self, model_config, tokenizer) -> None:
self.tokenizer = tokenizer
self.model_config = model_config
def __call__(
self, inputs: TextPrompt, sampling_params: SamplingParams
) -> Tuple[List[int], Optional[ExtraProcessedInputs]]:
"""The default input processor handles only tokenization."""
if self.tokenizer is None:
raise ValueError("tokenizer is required to tokenize string prompt")
if sampling_params.truncate_prompt_tokens is None:
token_ids = self.tokenizer.encode(
inputs["prompt"],
add_special_tokens=sampling_params.add_special_tokens)
else:
token_ids = self.tokenizer.encode(
inputs["prompt"],
add_special_tokens=sampling_params.add_special_tokens,
truncation=True,
max_length=sampling_params.truncate_prompt_tokens)
return token_ids, None
class InputProcessorRegistry:
def __init__(self) -> None:
self._input_processors_cls_by_model_type: Dict[
Type[nn.Module], Type[InputProcessor]] = {}
INPUT_PROCESSOR_REGISTRY = InputProcessorRegistry()
def register_input_processor(processor_cls: Type[InputProcessor]):
"""
Register an input processor to a model class.
"""
def wrapper(model_cls: N) -> N:
INPUT_PROCESSOR_REGISTRY._input_processors_cls_by_model_type[
model_cls] = processor_cls
return model_cls
return wrapper
def create_input_processor(model_path_or_dir: str, tokenizer):
"""
Create an input processor for a specific model.
"""
from tensorrt_llm._torch.model_config import ModelConfig
from tensorrt_llm._torch.models import get_model_architecture
model_config = None
try:
config = ModelConfig.from_pretrained(model_path_or_dir,
trust_remote_code=True)
model_config = config.pretrained_config
except ValueError:
config = None
if model_config is not None:
try:
model_cls, _ = get_model_architecture(model_config)
input_processor_cls = INPUT_PROCESSOR_REGISTRY._input_processors_cls_by_model_type \
.get(model_cls)
except RuntimeError: # unregistered model
input_processor_cls = None
if input_processor_cls is not None:
return input_processor_cls(model_config, tokenizer)
return DefaultInputProcessor(None, tokenizer)