mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
185 lines
5.7 KiB
Python
185 lines
5.7 KiB
Python
import abc
|
|
import socket
|
|
import sys
|
|
import time
|
|
from collections.abc import Callable
|
|
from concurrent.futures import Future, ThreadPoolExecutor
|
|
from typing import List, Optional, TypeVar
|
|
|
|
from tensorrt_llm.bindings.BuildInfo import ENABLE_MULTI_DEVICE
|
|
|
|
if ENABLE_MULTI_DEVICE:
|
|
from mpi4py.futures import MPICommExecutor, MPIPoolExecutor
|
|
|
|
from tensorrt_llm._utils import mpi_comm, mpi_rank, mpi_world_size
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
class MPINodeState:
|
|
''' MPINodeState acts as a central global state shares between tasks on MPI node.
|
|
|
|
An example:
|
|
def task():
|
|
if MPINodeState.state is None:
|
|
MPINodeState.state = 0
|
|
MPINodeState.state += 1
|
|
return MPINodeState.state
|
|
|
|
n_workers = 4
|
|
with MPIPoolExecutor(max_workers=n_workers) as executor:
|
|
for i in range(2):
|
|
futures = [executor.submit(task) for i in range(n_workers)]
|
|
|
|
This should produce the following output:
|
|
- [1, 1, 1, 1]
|
|
- [2, 2, 2, 2]
|
|
'''
|
|
|
|
state = None
|
|
|
|
@staticmethod
|
|
def is_initialized() -> bool:
|
|
return MPINodeState.state is not None
|
|
|
|
|
|
def external_mpi_comm_available(model_world_size: int) -> bool:
|
|
''' Check if the current process is launched by mpirun and does not use MPIPoolExecutor to spawn processes.
|
|
e.g. mpirun -np 4 python script.py
|
|
'''
|
|
if ENABLE_MULTI_DEVICE:
|
|
return mpi_world_size() == model_world_size and model_world_size > 1
|
|
else:
|
|
return False
|
|
|
|
|
|
def need_spawn_mpi_workers(model_world_size: int) -> bool:
|
|
''' Check if the current process needs to spawn MPI workers. '''
|
|
if ENABLE_MULTI_DEVICE:
|
|
return mpi_world_size() == 1 and model_world_size > 1
|
|
else:
|
|
return False
|
|
|
|
|
|
class MpiSession(abc.ABC):
|
|
|
|
@abc.abstractmethod
|
|
def submit(self, task: Callable[..., T], *args,
|
|
**kwargs) -> List[Future[T]]:
|
|
raise NotImplementedError()
|
|
|
|
@abc.abstractmethod
|
|
def submit_sync(self, task: Callable[..., T], *args, **kwargs) -> List[T]:
|
|
raise NotImplementedError()
|
|
|
|
@abc.abstractmethod
|
|
def shutdown(self):
|
|
raise NotImplementedError()
|
|
|
|
|
|
class MpiPoolSession(MpiSession):
|
|
|
|
def __init__(self, n_workers: int):
|
|
self.n_workers = n_workers
|
|
self.mpi_pool: Optional[MPIPoolExecutor] = None
|
|
self._start_mpi_pool()
|
|
|
|
def submit(self, task: Callable[..., T], *args,
|
|
**kwargs) -> List[Future[T]]:
|
|
return [
|
|
self.mpi_pool.submit(task, *args, **kwargs)
|
|
for i in range(self.n_workers)
|
|
]
|
|
|
|
def submit_sync(self, task: Callable[..., T], *args, **kwargs) -> List[T]:
|
|
futures = [
|
|
self.mpi_pool.submit(task, *args, **kwargs)
|
|
for i in range(self.n_workers)
|
|
]
|
|
return [future.result() for future in futures]
|
|
|
|
def shutdown(self):
|
|
if self.mpi_pool is not None:
|
|
self.mpi_pool.shutdown(wait=False)
|
|
self.mpi_pool = None
|
|
|
|
def _start_mpi_pool(self):
|
|
assert not self.mpi_pool, 'MPI session already started'
|
|
|
|
self.mpi_pool = MPIPoolExecutor(max_workers=self.n_workers,
|
|
path=sys.path)
|
|
|
|
def __del__(self):
|
|
self.shutdown()
|
|
|
|
def __reduce__(self):
|
|
raise TypeError('cannot pickle MPI session')
|
|
|
|
|
|
class MpiCommSession(MpiSession):
|
|
|
|
def __init__(self, n_workers: int = 1):
|
|
if n_workers <= 0:
|
|
raise ValueError(
|
|
f'n_workers must be non-negative, but got {n_workers}')
|
|
if n_workers != mpi_world_size():
|
|
raise ValueError(
|
|
f'n_workers must be equal to the number of processes launched by mpirun, got {n_workers} vs {mpi_world_size()}'
|
|
)
|
|
|
|
if mpi_rank() != 0:
|
|
raise RuntimeError(
|
|
f'only rank 0 can start multi-node session, got {mpi_rank()}')
|
|
if not external_mpi_comm_available(n_workers):
|
|
raise RuntimeError('The LLM instance should be launched by mpirun.')
|
|
|
|
self.n_workers = n_workers
|
|
self.thread_pool: Optional[ThreadPoolExecutor] = None
|
|
self.mpi_pool: Optional[MPIPoolExecutor] = None
|
|
|
|
self._start_mpi_pool()
|
|
|
|
def submit(self, task: Callable[..., T], *args,
|
|
**kwargs) -> List[Future[T]]:
|
|
assert self.mpi_pool is not None, 'MPI session not started'
|
|
|
|
# Trick: The MPICommExecutor excludes rank0 from workers, thus an extra task dispatching to rank0 is needed
|
|
worker_futures = [
|
|
self.mpi_pool.submit(task, *args, **kwargs)
|
|
for i in range(self.n_workers - 1)
|
|
]
|
|
# A trick to wait for rank0 to be ready, or the collective tasks will hang
|
|
# TODO[chunweiy]: Remove this trick for reducing normal tasks latencies
|
|
time.sleep(4)
|
|
|
|
rank0_future = self.thread_pool.submit(task, *args, **kwargs)
|
|
return [rank0_future] + worker_futures
|
|
|
|
def submit_sync(self, task: Callable[..., T], *args, **kwargs) -> List[T]:
|
|
futures = self.submit(task, *args, **kwargs)
|
|
return [future.result() for future in futures]
|
|
|
|
def shutdown(self):
|
|
if self.mpi_pool is not None:
|
|
self.mpi_pool.shutdown(wait=False)
|
|
self.mpi_pool = None
|
|
|
|
def _start_mpi_pool(self):
|
|
assert not self.mpi_pool, 'MPI session already started'
|
|
|
|
self.thread_pool = ThreadPoolExecutor(max_workers=2)
|
|
comm_executor = MPICommExecutor(mpi_comm())
|
|
self.mpi_pool = comm_executor.__enter__()
|
|
|
|
def __del__(self):
|
|
self.shutdown()
|
|
|
|
def __reduce__(self):
|
|
raise TypeError('cannot pickle MPI session')
|
|
|
|
|
|
def find_free_port() -> int:
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
s.bind(('', 0))
|
|
return s.getsockname()[1]
|