mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
135 lines
5.4 KiB
Python
135 lines
5.4 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from itertools import chain, product
|
|
|
|
import _utils
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
import torch
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm.quantization.functional import smooth_quant_gemm
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import skip_pre_ampere, unittest_name_func
|
|
|
|
|
|
class TestSmoothQuantGemm(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def _sq_gemm(self, m, n, k, dtype, per_token_scaling, per_channel_scaling,
|
|
use_plugin):
|
|
# Init operands for multiplication in int32
|
|
shape1 = (m, k)
|
|
mat1 = torch.randint(-128, 128, shape1, dtype=torch.int8)
|
|
shape2 = (n, k)
|
|
mat2 = torch.randint(-128, 128, shape2, dtype=torch.int8)
|
|
|
|
# Init scales in fp32
|
|
shape_scale_a = (m, 1) if per_token_scaling else (1, 1)
|
|
scale_a_torch = torch.ones(shape_scale_a, dtype=torch.float32) * 1e-2
|
|
scale_a_torch *= torch.randint(1,
|
|
10,
|
|
shape_scale_a,
|
|
dtype=torch.float32)
|
|
shape_scale_b = (1, n) if per_channel_scaling else (1, 1)
|
|
scale_b_torch = torch.ones(shape_scale_b, dtype=torch.float32) * 1e-2
|
|
scale_b_torch *= torch.randint(1,
|
|
10,
|
|
shape_scale_b,
|
|
dtype=torch.float32)
|
|
|
|
# Create builder
|
|
builder = tensorrt_llm.Builder()
|
|
# Create empty network
|
|
network = builder.create_network()
|
|
# Allow SQ plugin of dtype type
|
|
if use_plugin:
|
|
network.plugin_config.smooth_quant_gemm_plugin = dtype
|
|
with tensorrt_llm.net_guard(network):
|
|
# Init TensorRT-LLM tensor for mat1
|
|
x = Tensor(name='x',
|
|
shape=mat1.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
|
|
# Init TensorRT-LLM tensor for mat2
|
|
y = Tensor(name='y',
|
|
shape=mat2.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
|
|
# Init TensorRT-LLM tensor for per token scaling
|
|
scale_a = tensorrt_llm.functional.constant(scale_a_torch.numpy())
|
|
# Init TensorRT-LLM tensor for per channel scaling
|
|
scale_b = tensorrt_llm.functional.constant(scale_b_torch.numpy())
|
|
# Get output tensor for SQ gemm
|
|
output = smooth_quant_gemm(x, y, scale_a, scale_b,
|
|
per_token_scaling, per_channel_scaling,
|
|
dtype)
|
|
output.mark_output('output', dtype)
|
|
|
|
# TODO: When dtype=int32, per_token_scaling=False, per_channel_scaling=False,
|
|
# This test will break using new API on A30, only when running with all other unit tests.
|
|
# This is a weird issue, so skip changing this file.
|
|
engine = EngineFromNetwork(
|
|
(builder.trt_builder, network.trt_network),
|
|
config=CreateConfig(
|
|
memory_pool_limits={trt.MemoryPoolType.WORKSPACE: 33554432}))
|
|
|
|
# Infer engine
|
|
with TrtRunner(engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': mat1.numpy(),
|
|
'y': mat2.numpy(),
|
|
})
|
|
|
|
ref = _utils.gt_matmul_smooth_quant(mat1,
|
|
mat2,
|
|
scale_a_torch,
|
|
scale_b_torch,
|
|
dtype,
|
|
bias=None)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
|
|
|
|
@parameterized.expand(chain(
|
|
product(["float16", "float32", "int32"], [True, False], [True, False],
|
|
[True]),
|
|
product(["float16", "float32"], [True, False], [True, False], [False])),
|
|
name_func=unittest_name_func)
|
|
@skip_pre_ampere # SmoothQuant is not supported in pre-Ampere
|
|
def test_matmul(self, dtype, per_token_scaling, per_channel_scaling,
|
|
use_plugin):
|
|
bs = 2
|
|
inseq = 16
|
|
hidden_size = 768
|
|
|
|
# qkv_gemm
|
|
self._sq_gemm(bs * inseq, 3 * hidden_size, hidden_size, dtype,
|
|
per_token_scaling, per_channel_scaling, use_plugin)
|
|
|
|
# mlp_gemm_1
|
|
self._sq_gemm(bs * inseq, 4 * hidden_size, hidden_size, dtype,
|
|
per_channel_scaling, per_token_scaling, use_plugin)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|