TensorRT-LLMs/tests/quantization/test_smooth_quant_layer_norm.py
石晓伟 8f91cff22e
TensorRT-LLM Release 0.15.0 (#2529)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 13:44:56 +08:00

148 lines
5.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Parameter, Tensor
from tensorrt_llm._utils import torch_to_numpy
from tensorrt_llm.quantization.functional import smooth_quant_layer_norm
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import (create_session, run_session, skip_bf16_pre_ampere,
unittest_name_func)
class TestSmoothQuantLayerNorm(unittest.TestCase):
def setUp(self):
torch.manual_seed(1997)
tensorrt_llm.logger.set_level('error')
def load_test_cases():
test_cases = [('float16', False, True), ('float16', True, True),
('bfloat16', False, True), ('bfloat16', True, True),
('float32', False, True), ('float32', True, True),
('float16', True, False)]
test_cases = [i + (True, ) for i in test_cases
] + [i + (False, ) for i in test_cases]
return [i + (True, )
for i in test_cases] + [i + (False, ) for i in test_cases]
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
def test_smooth_quant_layer_norm(self, dtype, dynamic_act_scaling,
elementwise_affine, remove_batch_dim,
use_plugin):
# Skip tests that are not supported in pre-ampere architecture
skip_bf16_pre_ampere(dtype)
# test data
hidden_size = 1024
x_data = torch.randn(
(8, 128, hidden_size) if not remove_batch_dim else
(8 * 128, hidden_size),
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
eps = 1e-5
m = torch.nn.LayerNorm(
hidden_size,
eps=eps,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
elementwise_affine=elementwise_affine,
device="cuda")
# Scale to int
scale_data = torch.randint(2,
32, (1, ),
dtype=torch.float32,
device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
if use_plugin:
network.plugin_config.layernorm_quantization_plugin = dtype
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
weight = None
bias = None
if elementwise_affine:
gamma_data = m.weight.detach().cpu()
beta_data = m.bias.detach().cpu()
weight = Parameter(torch_to_numpy(gamma_data)).value
bias = Parameter(torch_to_numpy(beta_data)).value
scale = Parameter(torch_to_numpy(scale_data)).value
output = smooth_quant_layer_norm(
x,
hidden_size,
weight,
bias,
scale,
eps,
dynamic_act_scaling=dynamic_act_scaling)
if dynamic_act_scaling:
output, dynamic_scales = output
dynamic_scales.mark_output('dynamic_scales', 'float32')
output.mark_output('output', 'int8')
session = create_session(builder, network, precision=dtype, int8=True)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
def cast_to_int8_with_sat(tensor):
return tensor.round().clip(-128, 127).to(dtype=torch.int8)
# pytorch run
with torch.no_grad():
ref = m(x_data).to(dtype=torch.float32)
if dynamic_act_scaling:
abs_max_f, _ = ref.abs().max(dim=-1, keepdim=True)
dynamic_scale = abs_max_f / 127.0
ref_quantized = cast_to_int8_with_sat(ref * (127.0 / abs_max_f))
else:
ref_quantized = cast_to_int8_with_sat(ref * scale_data)
# compare diff of quantized output
# Set absolute tolerance to 1 to mitigate some rounding error
torch.testing.assert_close(ref_quantized,
outputs['output'],
atol=1,
rtol=0)
# compare diff of dynamic activation scales
if dynamic_act_scaling:
torch.testing.assert_close(dynamic_scale,
outputs['dynamic_scales'],
atol=1e-2,
rtol=1e-2)
if __name__ == '__main__':
unittest.main()