TensorRT-LLMs/tests/quantization/test_smooth_quant_rms_norm.py
Sharan Chetlur 258c7540c0 open source 09df54c0cc99354a60bbc0303e3e8ea33a96bef0 (#2725)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

open source f8c0381a2bc50ee2739c3d8c2be481b31e5f00bd (#2736)

Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>

Add note for blackwell (#2742)

Update the docs to workaround the extra-index-url issue (#2744)

update README.md (#2751)

Fix github io pages (#2761)

Update
2025-02-11 02:21:51 +00:00

169 lines
6.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
from parameterized import parameterized
from transformers.models.llama.modeling_llama import LlamaRMSNorm
import tensorrt_llm
from tensorrt_llm import Parameter, Tensor
from tensorrt_llm.quantization.functional import smooth_quant_rms_norm
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from itertools import product
from utils.util import (create_session, run_session, skip_bf16_pre_ampere,
unittest_name_func)
class TestSmoothQuantRmsNorm(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand(
[
combo for combo in product(
['float16', 'bfloat16', 'float32'], # dtypes
[False, True], # use_plugin
[True, False], # dynamic_act_scaling
[True, False] # sum_per_token
)
], # Skip when dynamic_act_scaling=False and sum_per_token=True
name_func=unittest_name_func)
def test_smooth_quant_rms_norm(self, dtype, use_plugin, dynamic_act_scaling,
sum_per_token):
if sum_per_token and not dynamic_act_scaling:
# Create builder
builder = tensorrt_llm.Builder()
# Create empty network
network = builder.create_network()
with tensorrt_llm.net_guard(network):
# Should fail
with self.assertRaisesRegex(
ValueError,
"sum_per_token is only allowed if dynamic_act_scaling is enabled!"
):
smooth_quant_rms_norm(
None,
None,
dynamic_act_scaling=dynamic_act_scaling,
sum_per_token=sum_per_token)
return
# Skip tests that are not supported in pre-ampere architecture
skip_bf16_pre_ampere(dtype)
test_shape = [2, 5, 10, 10]
x_data = torch.randn(
*test_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device="cuda")
m = LlamaRMSNorm(
test_shape[-1]).cuda() # LlamaRMSNorm only supports last dim
scale_data = torch.randint(2,
32, (1, ),
dtype=torch.float32,
device="cuda")
with torch.no_grad():
def cast_to_int8_with_sat(tensor):
return tensor.round().clip(-128, 127).to(dtype=torch.int8)
# pytorch run
with torch.no_grad():
ref = m(x_data).to(dtype=torch.float32)
if dynamic_act_scaling:
abs_max_f, _ = ref.abs().max(dim=-1, keepdim=True)
dynamic_scale = abs_max_f / 127.0
ref_quantized = cast_to_int8_with_sat(ref *
(127.0 / abs_max_f))
if sum_per_token:
ref_sums = ref.sum(dim=-1, keepdim=True)
else:
ref_quantized = cast_to_int8_with_sat(ref * scale_data)
# construct trt network
builder = tensorrt_llm.Builder()
builder.strongly_typed = False # Test need to run in weekly typed mode
network = builder.create_network()
if use_plugin:
network.plugin_config.rmsnorm_quantization_plugin = dtype
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = smooth_quant_rms_norm(
x,
test_shape[-1],
weight=tensorrt_llm.constant(m.weight.detach().cpu().numpy()),
scale=Parameter(scale_data.cpu().numpy()).value,
eps=m.variance_epsilon,
dynamic_act_scaling=dynamic_act_scaling,
sum_per_token=sum_per_token,
)
if dynamic_act_scaling:
if sum_per_token:
output, dynamic_scales, sums = output
sums.mark_output('sums', 'float32')
else:
output, dynamic_scales = output
dynamic_scales.mark_output('dynamic_scales', 'float32')
output.mark_output('output', 'int8')
session = create_session(builder, network, precision=dtype, int8=True)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
# compare diff of quantized output
# Set absolute tolerance to 1 to mitigate some rounding error
torch.testing.assert_close(ref_quantized,
outputs['output'],
atol=1,
rtol=0)
# compare diff of dynamic activation scales
if dynamic_act_scaling:
torch.testing.assert_close(dynamic_scale,
outputs['dynamic_scales'],
atol=1e-1,
rtol=1e-1)
if sum_per_token:
torch.testing.assert_close(ref_sums,
outputs['sums'],
atol=1e-1,
rtol=1e-1)
if __name__ == '__main__':
unittest.main()