TensorRT-LLMs/tests/quantization/test_weight_only_quant_matmul.py
2024-12-24 15:58:43 +08:00

172 lines
6.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import _utils
from tensorrt_llm._utils import torch_to_numpy
# isort: off
import torch
# isort: on
import os
import sys
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm.functional import constant
from tensorrt_llm.quantization.functional import weight_only_quant_matmul
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import (create_session, run_session, skip_pre_ampere,
unittest_name_func)
class TestWeightOnlyQuantMatmul(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def _unconvert_weights(self, weights, scales, dtype, wTypeId):
assert wTypeId == 1 or wTypeId == 2, f"wTypeId={wTypeId} is not supported"
torch_dtype = _utils.woq_torch_dtype(dtype)
# Init operands for multiplication in int32
mat1 = torch.eye(weights.shape[0], dtype=torch.float32,
device="cuda").to(torch_dtype)
return self._run_matmul(mat1, weights, scales, dtype, wTypeId, True)
def _run_matmul(self, mat1, processed_torch_weights, torch_weight_scales,
dtype, wTypeId, use_plugin):
# Create builder
builder = tensorrt_llm.Builder()
# Create empty network
network = builder.create_network()
# Allow WoQ plugin of dtype type
if use_plugin:
network.plugin_config.weight_only_quant_matmul_plugin = dtype
with tensorrt_llm.net_guard(network):
# Init TensorRT-LLM tensor for mat1
x = Tensor(name='x',
shape=mat1.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
# Init TensorRT-LLM tensor for weight
weights = constant(torch_to_numpy(processed_torch_weights))
# Init TensorRT-LLM tensor for per channel scaling
scale = constant(torch_to_numpy(torch_weight_scales))
# Get output tensor for WOQ Matmul
output = weight_only_quant_matmul(x,
weights,
scale,
wTypeId,
dtype=dtype)
output.mark_output('output', dtype)
# Build engine consisting of only WOQ Matmul
session = create_session(builder,
network,
precision=dtype,
int8=True,
memory_pool_limit=133554432)
inputs = {
'x': mat1,
}
outputs = run_session(session, inputs)
return outputs['output']
def _woq_matmul(self, m, n, k, dtype, wTypeId, use_plugin=True):
# Init operands for multiplication in int32
mat1 = _utils.woq_gen_weights(m, k, dtype) * 200.0
weight = _utils.woq_gen_weights(k, n, dtype)
ref_torch_weights, processed_torch_weights, torch_weight_scales = _utils.woq_conversion(
weight, wTypeId)
if wTypeId == 2 and use_plugin:
ref_torch_weights = torch.ops.trtllm.unpack_int4_packed_tensor_to_int8(
ref_torch_weights.cpu())
if not use_plugin:
processed_torch_weights = ref_torch_weights
output = self._run_matmul(mat1, processed_torch_weights,
torch_weight_scales, dtype, wTypeId,
use_plugin)
ref = _utils.woq_gt_matmul(m, mat1, ref_torch_weights.cuda(),
torch_weight_scales.cuda(), dtype)
_utils.woq_assert_near_eq(ref, output, wTypeId)
'''
ref = ref.cpu().flatten()
diff = abs(ref - output)
max_diff = diff.max()
ref_value_of_max_diff = ref[diff == max_diff]
out_value_of_max_diff = output[diff == max_diff]
print("###############\nmax diff is {} form {} vs {}\n###############\n\n".format(max_diff, out_value_of_max_diff, ref_value_of_max_diff))
'''
@parameterized.expand(
[
(1, 1024, 4096, 1, True),
(1, 1024, 4096, 1, False),
(128, 6144, 12288, 1, True), # FP16 * INT8
(1, 1024, 4096, 2, True),
(128, 6144, 12288, 2, True), # FP16 * INT4
],
name_func=unittest_name_func)
def test_matmul_fp16_act(self, m, n, k, wTypeId, use_plugin):
self._woq_matmul(m, n, k, 'float16', wTypeId, use_plugin)
@parameterized.expand(
[
(1, 1024, 4096, 1, True),
(1, 1024, 4096, 1, False),
(64, 6144, 12288, 1, True), # BF16 * INT8
(1, 1024, 4096, 2, True),
(256, 6144, 12288, 2, True), # BF16 * INT4
],
name_func=unittest_name_func)
@skip_pre_ampere
def test_matmul_bf16_act(self, m, n, k, wTypeId, use_plugin):
self._woq_matmul(m, n, k, 'bfloat16', wTypeId, use_plugin)
def _conversion_helper(self, n, k, dtype, wTypeId):
weight_ref = _utils.woq_gen_weights(n, k, dtype)
ref_int, perm_int, scale = _utils.woq_conversion(weight_ref, wTypeId)
weight_act = self._unconvert_weights(perm_int, scale, dtype, wTypeId)
_utils.woq_assert_near_eq(weight_ref, weight_act, wTypeId)
@parameterized.expand([(1024, 4096, 1), (4096, 512, 1), (1024, 4096, 2),
(4096, 512, 2)],
name_func=unittest_name_func)
def test_fp16_conversion(self, n, k, wTypeId):
self._conversion_helper(n, k, 'float16', wTypeId)
@parameterized.expand([(1024, 4096, 1), (4096, 512, 1), (1024, 4096, 2),
(4096, 512, 2)],
name_func=unittest_name_func)
@skip_pre_ampere
def test_bf16_conversion(self, n, k, wTypeId):
self._conversion_helper(n, k, 'bfloat16', wTypeId)
if __name__ == '__main__':
unittest.main()