TensorRT-LLMs/tests/test_session.py
Kaiyu Xie 5955b8afba
Update TensorRT-LLM Release branch (#1192)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-29 17:20:55 +08:00

79 lines
2.6 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
# isort: off
import torch
import tensorrt as trt
# isort: on
import tensorrt_llm
class MyAddModule(tensorrt_llm.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return x + y
class TestSession(unittest.TestCase):
def test_session_debug_run(self):
tensorrt_llm.logger.set_level('verbose')
builder = tensorrt_llm.Builder()
builder_config = builder.create_builder_config("test", "llmTimingCache")
model = MyAddModule()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = tensorrt_llm.Tensor(name='x', dtype=trt.float32, shape=[1, 1])
y = tensorrt_llm.Tensor(name='y', dtype=trt.float32, shape=[1, 1])
# Prepare
network.set_named_parameters(model.named_parameters())
# Forward
z = model(x, y)
z.mark_output('z', trt.float32)
### Addtionl debug tensor
debug_tensor = x * y
debug_tensor.mark_output('debug_tensor', trt.float32)
engine = builder.build_engine(network, builder_config)
assert engine is not None
# Show to _debug_run can be used
# You need to mark "z" and "debug_tensor" as output, and then use Session._debug_run
# to run inference and get the output
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
inputs = {
'x': torch.rand([1, 1], device='cuda'),
'y': torch.rand([1, 1], device='cuda')
}
outputs = session._debug_run(inputs)
assert 'z' in outputs and 'debug_tensor' in outputs
expected_debug_tensor = inputs['x'] * inputs['y']
expected_z = inputs['x'] + inputs['y']
self.assertTrue(
torch.allclose(outputs['debug_tensor'], expected_debug_tensor))
self.assertTrue(torch.allclose(outputs['z'], expected_z))
if __name__ == '__main__':
unittest.main()