mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
79 lines
2.6 KiB
Python
79 lines
2.6 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
|
|
import tensorrt_llm
|
|
|
|
|
|
class MyAddModule(tensorrt_llm.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
|
|
|
|
class TestSession(unittest.TestCase):
|
|
|
|
def test_session_debug_run(self):
|
|
tensorrt_llm.logger.set_level('verbose')
|
|
builder = tensorrt_llm.Builder()
|
|
builder_config = builder.create_builder_config("test", "llmTimingCache")
|
|
model = MyAddModule()
|
|
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
x = tensorrt_llm.Tensor(name='x', dtype=trt.float32, shape=[1, 1])
|
|
y = tensorrt_llm.Tensor(name='y', dtype=trt.float32, shape=[1, 1])
|
|
# Prepare
|
|
network.set_named_parameters(model.named_parameters())
|
|
# Forward
|
|
z = model(x, y)
|
|
z.mark_output('z', trt.float32)
|
|
|
|
### Addtionl debug tensor
|
|
debug_tensor = x * y
|
|
debug_tensor.mark_output('debug_tensor', trt.float32)
|
|
|
|
engine = builder.build_engine(network, builder_config)
|
|
assert engine is not None
|
|
|
|
# Show to _debug_run can be used
|
|
# You need to mark "z" and "debug_tensor" as output, and then use Session._debug_run
|
|
# to run inference and get the output
|
|
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
|
|
inputs = {
|
|
'x': torch.rand([1, 1], device='cuda'),
|
|
'y': torch.rand([1, 1], device='cuda')
|
|
}
|
|
outputs = session._debug_run(inputs)
|
|
assert 'z' in outputs and 'debug_tensor' in outputs
|
|
|
|
expected_debug_tensor = inputs['x'] * inputs['y']
|
|
expected_z = inputs['x'] + inputs['y']
|
|
self.assertTrue(
|
|
torch.allclose(outputs['debug_tensor'], expected_debug_tensor))
|
|
self.assertTrue(torch.allclose(outputs['z'], expected_z))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|