TensorRT-LLMs/tests/functional/test_gather.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

80 lines
2.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestGather(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_gather(self):
dtype = 'float32'
x_data = torch.randn(2, 128, 768, device="cuda")
y_data = torch.tensor([101, 127], device="cuda").int()
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=y_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
y = y.view(
tensorrt_llm.functional.concat(
[tensorrt_llm.functional.shape(y, 0), 1, 1]))
y = tensorrt_llm.functional.expand(
y,
tensorrt_llm.functional.concat([
tensorrt_llm.functional.shape(y, 0), 1,
tensorrt_llm.functional.shape(x, 2)
]))
output = tensorrt_llm.functional.gather(x, dim=1, indices=y).view(
tensorrt_llm.functional.concat([
tensorrt_llm.functional.shape(x, 0),
tensorrt_llm.functional.shape(x, 2)
]))
output.mark_output('output', dtype)
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {'x': x_data, 'y': y_data}
outputs = run_session(session, inputs)
# pytorch run
y_data = y_data.reshape(y_data.size(0), 1, 1)
y_data = y_data.expand(y_data.size(0), 1, x_data.size(-1))
ref = torch.gather(x_data, dim=1,
index=y_data.to(dtype=torch.int64)).view(
x_data.size(0), x_data.size(2))
# compare diff
torch.testing.assert_close(ref, outputs['output'])