mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: RunningLeon <mnsheng@yeah.net> Co-authored-by: Tlntin <TlntinDeng01@Gmail.com> Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com> Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com> Co-authored-by: Nathan Price <nathan@abridge.com> Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com> Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
80 lines
2.8 KiB
Python
80 lines
2.8 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import create_session, run_session
|
|
|
|
|
|
class TestGather(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_gather(self):
|
|
dtype = 'float32'
|
|
x_data = torch.randn(2, 128, 768, device="cuda")
|
|
y_data = torch.tensor([101, 127], device="cuda").int()
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
y = Tensor(name='y',
|
|
shape=y_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
|
|
|
|
y = y.view(
|
|
tensorrt_llm.functional.concat(
|
|
[tensorrt_llm.functional.shape(y, 0), 1, 1]))
|
|
y = tensorrt_llm.functional.expand(
|
|
y,
|
|
tensorrt_llm.functional.concat([
|
|
tensorrt_llm.functional.shape(y, 0), 1,
|
|
tensorrt_llm.functional.shape(x, 2)
|
|
]))
|
|
output = tensorrt_llm.functional.gather(x, dim=1, indices=y).view(
|
|
tensorrt_llm.functional.concat([
|
|
tensorrt_llm.functional.shape(x, 0),
|
|
tensorrt_llm.functional.shape(x, 2)
|
|
]))
|
|
output.mark_output('output', dtype)
|
|
|
|
# trt run
|
|
session = create_session(builder, network, precision=dtype)
|
|
inputs = {'x': x_data, 'y': y_data}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# pytorch run
|
|
y_data = y_data.reshape(y_data.size(0), 1, 1)
|
|
y_data = y_data.expand(y_data.size(0), 1, x_data.size(-1))
|
|
ref = torch.gather(x_data, dim=1,
|
|
index=y_data.to(dtype=torch.int64)).view(
|
|
x_data.size(0), x_data.size(2))
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(ref, outputs['output'])
|