TensorRT-LLMs/tests/functional/test_gelu.py
Kaiyu Xie b777bd6475
Update TensorRT-LLM (#1725)
* Update TensorRT-LLM

---------

Co-authored-by: RunningLeon <mnsheng@yeah.net>
Co-authored-by: Tlntin <TlntinDeng01@Gmail.com>
Co-authored-by: ZHENG, Zhen <zhengzhen.z@qq.com>
Co-authored-by: Pham Van Ngoan <ngoanpham1196@gmail.com>
Co-authored-by: Nathan Price <nathan@abridge.com>
Co-authored-by: Tushar Goel <tushar.goel.ml@gmail.com>
Co-authored-by: Mati <132419219+matichon-vultureprime@users.noreply.github.com>
2024-06-04 20:26:32 +08:00

82 lines
2.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import sys
import unittest
import torch
from parameterized import parameterized
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import (create_session, run_session, skip_bf16_pre_ampere,
unittest_name_func)
class TestGelu(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@staticmethod
def gelu(x, dtype):
if dtype == 'float32':
res = torch.nn.functional.gelu(x)
else:
res = 0.5 * x * (1 + torch.tanh(
math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
return res
@parameterized.expand(('float32', 'float16', 'bfloat16'),
name_func=unittest_name_func)
def test_gelu(self, dtype):
# Skip tests that are not supported in pre-ampere architecture
skip_bf16_pre_ampere(dtype)
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
x_shape = (12, 12, 96, 96)
x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.gelu(x)
output.mark_output('output', dtype)
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = self.gelu(x_data, dtype).to(torch_dtype)
# compare diff
if dtype == 'bfloat16':
atol, rtol = 1e-5, 2e-2
else:
atol, rtol = 1e-5, 2e-3
torch.testing.assert_close(outputs['output'], ref, atol=atol, rtol=rtol)