TensorRT-LLMs/tests/functional/test_pp_reduce_scatter.py
2024-11-05 16:27:06 +08:00

198 lines
7.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from itertools import product
import pytest
# isort: off
import torch
# isort: on
import os
import sys
from cuda import cudart
from parameterized import parameterized
import tensorrt_llm as tllm
from tensorrt_llm import Mapping, Tensor
from tensorrt_llm.functional import (allgather, allreduce, concat, recv,
reduce_scatter, send)
from tensorrt_llm.plugin.plugin import (current_all_reduce_helper,
init_all_reduce_helper)
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session, unittest_name_func
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import unittest_name_func
def forward_allreduce(x: Tensor, y: Tensor, mapping: Mapping) -> Tensor:
current = x
if mapping.tp_size > 1 and mapping.tp_group is not None:
current = allreduce(current, mapping.tp_group)
current = current + y
return current
def forward_reduce_scatter(x: Tensor, y: Tensor, mapping: Mapping,
hidden_size: int) -> Tensor:
if mapping.tp_rank == 0:
current = x + y
else:
current = x + 0
# reshape to (-1)
current = current.view(concat([-1]))
if mapping.tp_size > 1 and mapping.tp_group is not None:
current = reduce_scatter(current, mapping.tp_group)
# reshape to (-1, hidden_size // tp_size)
current = current.view(concat([-1, hidden_size // mapping.tp_size]))
return current
class TestPPReduceScatter(unittest.TestCase):
def setUp(self):
torch.manual_seed(20240603)
torch.cuda.manual_seed(20240603)
tllm.logger.set_level('error')
self.world_size = tllm.mpi_world_size()
self.rank = tllm.mpi_rank()
torch.cuda.set_device(self.rank)
cudart.cudaSetDevice(self.rank)
self.reference_tensors = [
torch.full([10000000], i + 1, dtype=torch.float32, device="cuda")
for i in range(self.world_size)
]
@parameterized.expand(list(
product(['bfloat16', 'float16', 'float32'], [1, 4, 16, 64],
[4096, 8192, 12288], [2, 4, 8])),
name_func=unittest_name_func)
def test_pp_reduce_scatter(self, dtype: str, token_num: int,
hidden_size: int, pp_size: int):
if self.world_size == 1 or pp_size > self.world_size:
pytest.skip("Skip single GPU and pp_size > world_size case")
tp_size = self.world_size // pp_size
mapping = Mapping(self.world_size,
self.rank,
self.world_size,
tp_size=tp_size,
pp_size=pp_size)
size = token_num * hidden_size # tensor size
torch_dtype = tllm._utils.str_dtype_to_torch(dtype)
dtype_size = torch.finfo(torch_dtype).bits // 8
input = self.reference_tensors[self.rank][:size].to(
torch_dtype).reshape(token_num, hidden_size)
residual = torch.rand(input.shape, dtype=torch_dtype, device="cuda")
input_recv = torch.zeros(torch.Size([token_num,
hidden_size // tp_size]),
dtype=torch_dtype,
device="cuda")
builder = tllm.Builder()
net_ref = builder.create_network()
net = builder.create_network()
init_all_reduce_helper()
_, workspace = current_all_reduce_helper().allocate_workspace(
mapping, size * dtype_size)
with tllm.net_guard(net_ref):
x = Tensor(name='x',
shape=input.shape,
dtype=tllm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=residual.shape,
dtype=tllm.str_dtype_to_trt(dtype))
current_all_reduce_helper().set_workspace_tensor(mapping)
if not mapping.is_first_pp_rank():
net_ref_input = x
net_ref_input = recv(net_ref_input, mapping.prev_pp_rank())
else:
net_ref_input = x
if not mapping.is_last_pp_rank():
output_ref = forward_allreduce(net_ref_input, y, mapping)
output_ref = send(output_ref, mapping.next_pp_rank())
else:
output_ref = forward_allreduce(net_ref_input, y, mapping)
output_ref.mark_output('output', dtype)
with tllm.net_guard(net):
x = Tensor(name='x',
shape=input.shape,
dtype=tllm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=residual.shape,
dtype=tllm.str_dtype_to_trt(dtype))
x_recv = Tensor(name='x_recv',
shape=torch.Size(
[token_num, hidden_size // mapping.tp_size]),
dtype=tllm.str_dtype_to_trt(dtype))
current_all_reduce_helper().set_workspace_tensor(mapping)
if not mapping.is_first_pp_rank():
net_input = x_recv
net_input = recv(net_input, mapping.prev_pp_rank())
net_input = allgather(net_input, mapping.tp_group, gather_dim=0)
# reshape to (-1, hidden_size)
net_input = net_input.view(concat([-1, hidden_size]))
else:
net_input = x
if not mapping.is_last_pp_rank():
output = forward_reduce_scatter(net_input, y, mapping,
hidden_size)
output = send(output, mapping.next_pp_rank())
else:
output = forward_allreduce(net_input, y, mapping)
output.mark_output('output', dtype)
feed_dict_ref = {
'x': input,
'y': residual,
'all_reduce_workspace': workspace
}
feed_dict = {
'x': input,
'y': residual,
'x_recv': input_recv,
'all_reduce_workspace': workspace
}
# trt run
session_ref = create_session(builder, net_ref, precision=dtype)
outputs_ref = run_session(session_ref, feed_dict_ref)
session = create_session(builder, net, precision=dtype)
outputs = run_session(session, feed_dict)
# compare diff
if mapping.is_last_pp_rank():
torch.testing.assert_allclose(outputs['output'],
outputs_ref['output'],
atol=1e-5,
rtol=1e-2)
if __name__ == "__main__":
unittest.main()