TensorRT-LLMs/tests/model/test_gptj.py
2024-11-05 16:27:06 +08:00

503 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tempfile
import unittest
from itertools import product
import numpy as np
# isort: off
import torch
import tensorrt as trt
# isort: on
from parameterized import parameterized
from transformers import GPTJConfig, GPTJForCausalLM
import tensorrt_llm
from tensorrt_llm import Builder
from tensorrt_llm.models.gptj.convert import load_weights_from_hf_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_fp32_accum_pre_ampere, unittest_name_func
class TestGPTJ(unittest.TestCase):
def _gen_hf_gpt_j(self, hidden_act, n_layer, max_length, dtype):
gpt_config = GPTJConfig(activation_function=hidden_act,
n_layer=n_layer,
max_length=max_length,
torch_dtype=dtype,
n_embd=4096,
n_head=16,
rotary_dim=64)
hf_gpt = GPTJForCausalLM(gpt_config).cuda().to(
tensorrt_llm._utils.str_dtype_to_torch(dtype)).eval()
return gpt_config, hf_gpt
def _gen_tensorrt_llm_network(self, network: tensorrt_llm.Network,
hf_gpt: GPTJForCausalLM,
gpt_config: GPTJConfig, dtype: str,
batch_size: int, beam_width: int,
input_len: int, output_len: int,
tensor_parallel: int, rank: int):
config = {
"architecture": "GPTJForCausalLM",
"dtype": dtype,
"logits_dtype": "float32",
"num_hidden_layers": gpt_config.num_hidden_layers,
"num_attention_heads": gpt_config.num_attention_heads,
"hidden_size": gpt_config.hidden_size,
"vocab_size": gpt_config.vocab_size,
"position_embedding_type": "rope_gptj",
"max_position_embeddings": 2048,
"hidden_act": "gelu",
"quantization": {
"quant_algo": None,
},
"mapping": {
"world_size": tensor_parallel,
"tp_size": tensor_parallel
},
"rotary_dim": 64
}
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
config.set_rank(rank)
weights = load_weights_from_hf_model(hf_gpt, config)
trtllm_model = tensorrt_llm.models.GPTJForCausalLM(config)
trtllm_model.load(weights)
with net_guard(network):
# Initialize model
network.set_named_parameters(trtllm_model.named_parameters())
inputs = trtllm_model.prepare_inputs(
max_batch_size=batch_size,
max_input_len=input_len,
max_seq_len=input_len + output_len,
max_num_tokens=batch_size * input_len,
use_cache=True,
max_beam_width=beam_width)
# Prepare
trtllm_model(**inputs)
return network
def _gen_tensorrt_llm_runtime(self,
dtype,
world_size,
rank,
gpt_config,
hf_gpt,
use_attention_plugin,
batch_size,
beam_width,
input_len,
output_len,
use_refit,
use_ln_gemm_plugin,
context_fmha_flag=ContextFMHAType.disabled,
enable_remove_input_padding=False):
tensorrt_llm.logger.set_level('error')
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
runtime = None
builder = Builder()
with tempfile.TemporaryDirectory() as tmpdirname:
builder_config = builder.create_builder_config(
name='gptj',
precision=dtype,
timing_cache='model.cache',
tensor_parallel=world_size, # TP only
use_refit=use_refit,
strongly_typed=True,
)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if use_attention_plugin:
network.plugin_config.gpt_attention_plugin = dtype
if use_ln_gemm_plugin:
network.plugin_config.gemm_plugin = dtype
if enable_remove_input_padding:
network.plugin_config.remove_input_padding = True
network.plugin_config.set_context_fmha(context_fmha_flag)
self._gen_tensorrt_llm_network(network, hf_gpt, gpt_config, dtype,
batch_size, beam_width, input_len,
output_len, world_size, rank)
engine_buffer = builder.build_engine(network, builder_config)
assert engine_buffer is not None
runtime = tensorrt_llm.runtime.generation._Runtime(
engine_buffer, mapping)
ok = builder.save_timing_cache(builder_config, 'model.cache')
assert ok, "Failed to save timing cache."
return runtime, engine_buffer
def load_test_cases():
test_cases = list(
product([
ContextFMHAType.disabled, ContextFMHAType.enabled,
ContextFMHAType.enabled_with_fp32_acc
], [False, True]))
return test_cases
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
def test_gptj_plugin(self, context_fmha_flag, enable_remove_input_padding):
# Skip tests that are not supported in pre-ampere architecture
skip_fp32_accum_pre_ampere(context_fmha_flag)
torch.random.manual_seed(0)
use_refit = False
dtype = 'float16'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 2
max_length = 2
batch_size = 1
beam_width = 1
seq_len = 12
total_seq_len = max_length + seq_len
use_attention_plugin = True
use_ln_gemm_plugin = True
gpt_config, hf_gpt = self._gen_hf_gpt_j(hidden_act, n_layer,
seq_len + max_length, dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
dtype,
world_size,
rank,
gpt_config,
hf_gpt,
use_attention_plugin,
batch_size,
beam_width,
seq_len,
max_length,
use_refit,
use_ln_gemm_plugin,
context_fmha_flag,
enable_remove_input_padding=enable_remove_input_padding)
key_value_cache_buffers = []
head_size = gpt_config.n_embd // gpt_config.n_head
for i in range(gpt_config.n_layer):
key_value_cache_buffers.append(
torch.zeros((
batch_size,
2,
gpt_config.n_head,
total_seq_len,
head_size,
),
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device='cuda'))
def run_engine(
context,
input_ids,
context_lengths,
host_request_types,
position_ids,
last_token_ids,
cache_indirection,
host_past_key_value_lengths,
host_max_attention_window_sizes,
host_sink_token_length,
sequence_length,
host_runtime_perf_knobs,
host_context_progress,
host_context_lengths=None,
):
ctx_buffer = {
'input_ids': input_ids,
'context_lengths': context_lengths,
'host_request_types': host_request_types,
'position_ids': position_ids,
'last_token_ids': last_token_ids,
'cache_indirection': cache_indirection,
'host_past_key_value_lengths': host_past_key_value_lengths,
'sequence_length': sequence_length,
'host_sink_token_length': host_sink_token_length,
'host_runtime_perf_knobs': host_runtime_perf_knobs,
'host_context_progress': host_context_progress,
}
ctx_buffer[
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
for i in range(gpt_config.n_layer):
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
ctx_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[
i]
if enable_remove_input_padding:
assert host_context_lengths is not None, "host_context_lengths is required for ragged input"
ctx_buffer['host_context_lengths'] = host_context_lengths
ctx_shape = {
key: buffer.shape
for key, buffer in ctx_buffer.items()
}
runtime._set_shape(context, ctx_shape)
runtime._set_buffer(context, ctx_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = ctx_buffer['logits']
return res
cache_indirections = [
torch.full((
batch_size,
beam_width,
total_seq_len,
),
0,
dtype=torch.int32,
device='cuda'),
torch.full((
batch_size,
beam_width,
total_seq_len,
),
0,
dtype=torch.int32,
device='cuda')
] # ping-pong buffers
ctx_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
# We need sequence_lengths start as context_lengths, and are added one in each step.
sequence_length_buffer = ctx_context_lengths.detach().clone()
hf_outputs = None
def compare_context():
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
with torch.no_grad():
nonlocal hf_outputs
hf_outputs = hf_gpt.forward(ctx_ids, use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
ctx_position_ids = torch.tensor(range(seq_len),
dtype=torch.int32).reshape([
1, seq_len
]).expand([batch_size,
seq_len]).cuda()
ctx_last_token_ids = ctx_context_lengths.clone()
if enable_remove_input_padding:
ctx_ids = ctx_ids.view([batch_size * seq_len])
ctx_position_ids = ctx_position_ids.view([batch_size * seq_len])
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids,
dim=0).int()
host_request_types = torch.tensor([0 for i in range(batch_size)],
dtype=torch.int32).cpu()
host_past_key_value_lengths = torch.tensor([0] * batch_size,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([total_seq_len] *
gpt_config.n_layer,
dtype=torch.int32)
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
host_context_lengths = ctx_context_lengths.cpu(
) if enable_remove_input_padding else None
perf_knob_tensor_size = 16
context_runtime_perf_knobs = torch.tensor([-1] *
perf_knob_tensor_size,
dtype=torch.int64)
if context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
context_runtime_perf_knobs[
1] = 1 # enable_context_fmha_fp32_acc
host_context_progress = torch.tensor([0], dtype=torch.int64)
res = run_engine(
context=runtime.ctx_context,
input_ids=ctx_ids,
context_lengths=ctx_context_lengths,
position_ids=ctx_position_ids,
last_token_ids=ctx_last_token_ids,
cache_indirection=cache_indirections[0],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
host_sink_token_length=host_sink_token_length,
sequence_length=sequence_length_buffer,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types,
host_runtime_perf_knobs=context_runtime_perf_knobs,
host_context_progress=host_context_progress)
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
v_inner = 16 // (2 if dtype == 'float16' else 4)
for i in range(gpt_config.n_layer):
res_present_key_value = key_value_cache_buffers[i]
past_key_value_tensor = res_present_key_value.permute(
1, 0, 2, 3, 4)
key, value = past_key_value_tensor.chunk(2)
# TRT-LLM has the same cache layout for key and value:
# [bs, n_head, max_seq_len, head_size]
head_size = gpt_config.n_embd // gpt_config.n_head
key = key.reshape(batch_size, gpt_config.n_head, total_seq_len,
head_size)
value = value.reshape(batch_size, gpt_config.n_head,
total_seq_len, head_size)
ref_present_key, ref_present_value = hf_outputs.past_key_values[
i]
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
key[:, :, :seq_len, :].cpu().numpy(),
atol=1e-1)
np.testing.assert_allclose(
ref_present_value.cpu().numpy(),
value[:, :, :seq_len, :].cpu().numpy(),
atol=1e-1)
def compare_generation():
step1_id = torch.randint(100, (batch_size, 1)).int().cuda()
gen_position_ids = torch.ones_like(step1_id).int().cuda() * seq_len
gen_context_lengths = ctx_context_lengths.clone()
gen_last_token_ids = torch.zeros_like(
gen_context_lengths).int().cuda()
with torch.no_grad():
nonlocal hf_outputs
hf_outputs = hf_gpt.forward(
step1_id,
past_key_values=hf_outputs.past_key_values,
position_ids=gen_position_ids.to(torch.int64),
use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
if enable_remove_input_padding:
step1_id = step1_id.view([batch_size])
gen_position_ids = gen_position_ids.view([batch_size])
gen_last_token_ids = torch.ones_like(
gen_context_lengths).int().cuda()
gen_last_token_ids = torch.cumsum(gen_last_token_ids,
dim=0).int()
host_past_key_value_lengths = torch.tensor([seq_len] * batch_size,
dtype=torch.int32)
host_max_attention_window_sizes = torch.tensor([total_seq_len] *
gpt_config.n_layer,
dtype=torch.int32)
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
host_request_types = torch.tensor([1] * batch_size,
dtype=torch.int32).cpu()
host_context_lengths = gen_context_lengths.cpu(
) if enable_remove_input_padding else None
# For step 1, the sequence_lengths = context_lengths + 1.
sequence_length_buffer = torch.add(ctx_context_lengths, 1)
perf_knob_tensor_size = 16
gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
dtype=torch.int64)
if context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
gen_runtime_perf_knobs[1] = 1 # enable_context_fmha_fp32_acc
host_context_progress = torch.tensor([0], dtype=torch.int64)
res = run_engine(
context=runtime.context_1,
input_ids=step1_id,
# note we should pass context length for generation phase.
context_lengths=ctx_context_lengths,
position_ids=gen_position_ids,
last_token_ids=gen_last_token_ids,
cache_indirection=cache_indirections[1],
host_past_key_value_lengths=host_past_key_value_lengths,
host_max_attention_window_sizes=host_max_attention_window_sizes,
host_sink_token_length=host_sink_token_length,
sequence_length=sequence_length_buffer,
host_context_lengths=host_context_lengths,
host_request_types=host_request_types,
host_runtime_perf_knobs=gen_runtime_perf_knobs,
host_context_progress=host_context_progress)
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
compare_context()
compare_generation()
def test_gptj_noplugin_supported(self):
use_refit = False
dtype = 'float16'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 1
max_length = 2
batch_size = 4
seq_len = 128
use_attention_plugin = False
use_ln_gemm_plugin = True
beam_width = 1
gpt_config, hf_gpt = self._gen_hf_gpt_j(hidden_act, n_layer,
seq_len + max_length, dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
dtype, world_size, rank, gpt_config, hf_gpt, use_attention_plugin,
batch_size, beam_width, seq_len, max_length, use_refit,
use_ln_gemm_plugin)
use_ln_gemm_plugin = False
if trt.__version__[:3] == '8.6':
with self.assertRaisesRegex(
AssertionError,
"You need to enable the LayerNorm plugin for GPT-J with TensorRT"
):
runtime, _ = self._gen_tensorrt_llm_runtime(
dtype, world_size, rank, gpt_config, hf_gpt,
use_attention_plugin, batch_size, beam_width, seq_len,
max_length, use_refit, use_ln_gemm_plugin)
if __name__ == '__main__':
unittest.main()