TensorRT-LLMs/tests/model/test_gptneox.py
2024-11-05 16:27:06 +08:00

452 lines
19 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tempfile
import unittest
from itertools import product
import numpy as np
# isort: off
import torch
# isort: on
from parameterized import parameterized
from transformers import GPTNeoXConfig, GPTNeoXForCausalLM
import tensorrt_llm
from tensorrt_llm import Builder
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
import os
import sys
from examples.gptneox.convert_checkpoint import convert_hf_gptneox
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_fp32_accum_pre_ampere, unittest_name_func
def compare_max_abs_error(ref, res, str):
# calculate max abs error
compare_HF = ref.cpu().numpy().flatten()
compare_TRT_LLM = res.cpu().numpy().flatten()
max_abs_error = np.max(abs(compare_TRT_LLM - compare_HF))
print(str, "max abs error = ", max_abs_error)
class TestGPTNeoX(unittest.TestCase):
def _gen_hf_gpt_neox(self, hidden_act, n_layer, max_length, dtype):
gpt_config = GPTNeoXConfig(hidden_act=hidden_act,
num_hidden_layers=n_layer,
max_length=max_length,
torch_dtype=dtype,
hidden_size=4096,
intermediate_size=4096 * 4,
num_attention_heads=64,
rotary_pct=0.25)
hf_gpt = GPTNeoXForCausalLM(gpt_config).cuda().to(
tensorrt_llm._utils.str_dtype_to_torch(dtype)).eval()
return gpt_config, hf_gpt
def _gen_tensorrt_llm_network(self, network, builder, hf_gpt, gpt_config,
batch_size, beam_width, input_len, output_len,
dtype, gpt_attention_plugin, rank,
tensor_parallel,
apply_query_key_layer_scaling):
num_layers = gpt_config.num_hidden_layers
num_heads = gpt_config.num_attention_heads
hidden_size = gpt_config.hidden_size
vocab_size = gpt_config.vocab_size
hidden_act = gpt_config.hidden_act
max_position_embeddings = gpt_config.max_position_embeddings
list(range(tensor_parallel))
config = {
'architecture': 'GPTNeoXForCausalLM',
'dtype': dtype,
"num_hidden_layers": num_layers,
"num_attention_heads": num_heads,
"hidden_size": hidden_size,
"vocab_size": vocab_size,
"position_embedding_type": "rope_gpt_neox",
"max_position_embeddings": max_position_embeddings,
"rotary_emb_base": 10000,
"rotary_pct": gpt_config.rotary_pct,
"hidden_act": hidden_act,
"mapping": {
"world_size": tensor_parallel,
"tp_size": tensor_parallel
},
"use_parallel_embedding": False,
"embedding_sharding_dim": 0,
"share_embedding_table": False
}
config = tensorrt_llm.models.PretrainedConfig.from_dict(config)
weights = convert_hf_gptneox(hf_gpt,
mapping=Mapping(rank=rank,
world_size=tensor_parallel,
tp_size=tensor_parallel),
dtype=dtype)
tensorrt_llm_gptneox = tensorrt_llm.models.GPTNeoXForCausalLM(config)
tensorrt_llm_gptneox.load(weights)
with net_guard(network):
network.set_named_parameters(
tensorrt_llm_gptneox.named_parameters())
inputs = tensorrt_llm_gptneox.prepare_inputs(
max_batch_size=batch_size,
max_input_len=input_len,
max_seq_len=input_len + output_len,
max_num_tokens=batch_size * input_len,
use_cache=True,
max_beam_width=beam_width)
# Prepare
tensorrt_llm_gptneox(**inputs)
return network
def _gen_tensorrt_llm_runtime(self,
log_level,
dtype,
world_size,
rank,
gpt_config,
hf_gpt,
model,
use_attention_plugin,
batch_size,
beam_width,
input_len,
output_len,
use_refit,
use_ln_gemm_plugin,
apply_query_key_layer_scaling,
context_fmha_flag=ContextFMHAType.disabled,
enable_remove_input_padding=False):
tensorrt_llm.logger.set_level('error')
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
runtime = None
builder = Builder()
with tempfile.TemporaryDirectory() as tmpdirname:
builder_config = builder.create_builder_config(
name='gptneox',
precision=dtype,
timing_cache='model.cache',
tensor_parallel=world_size, # TP only
use_refit=use_refit,
strongly_typed=True,
)
network = builder.create_network()
network.plugin_config.to_legacy_setting()
if use_attention_plugin:
network.plugin_config.gpt_attention_plugin = dtype
if use_ln_gemm_plugin:
network.plugin_config.gemm_plugin = dtype
if enable_remove_input_padding:
network.plugin_config.remove_input_padding = True
network.plugin_config.set_context_fmha(context_fmha_flag)
self._gen_tensorrt_llm_network(network, builder, hf_gpt, gpt_config,
batch_size, beam_width, input_len,
output_len, dtype,
use_attention_plugin, rank,
world_size,
apply_query_key_layer_scaling)
engine_buffer = builder.build_engine(network, builder_config)
runtime = tensorrt_llm.runtime.generation._Runtime(
engine_buffer, mapping)
ok = builder.save_timing_cache(builder_config, 'model.cache')
assert ok, "Failed to save timing cache."
return runtime, engine_buffer
def load_test_cases():
test_cases = product([
ContextFMHAType.disabled, ContextFMHAType.enabled,
ContextFMHAType.enabled_with_fp32_acc
], [False, True])
return test_cases
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
def test_gptneox_plugin(self, context_fmha_flag,
enable_remove_input_padding):
# Skip tests that are not supported in pre-ampere architecture
skip_fp32_accum_pre_ampere(context_fmha_flag)
torch.random.manual_seed(0)
use_refit = False
apply_query_key_layer_scaling = False
model = 'gptneox'
log_level = 'error'
dtype = 'float16'
world_size = 1
rank = 0
hidden_act = 'gelu'
n_layer = 6
max_length = 128
batch_size = 1
beam_width = 1
seq_len = 128
total_seq_len = max_length + seq_len
use_attention_plugin = True
use_ln_gemm_plugin = True
gpt_config, hf_gpt = self._gen_hf_gpt_neox(hidden_act, n_layer,
seq_len + max_length, dtype)
runtime, _ = self._gen_tensorrt_llm_runtime(
log_level, dtype, world_size, rank, gpt_config, hf_gpt, model,
use_attention_plugin, batch_size, beam_width, seq_len, max_length,
use_refit, use_ln_gemm_plugin, apply_query_key_layer_scaling,
context_fmha_flag, enable_remove_input_padding)
key_value_cache_buffers = []
head_size = gpt_config.hidden_size // gpt_config.num_attention_heads
for i in range(gpt_config.num_hidden_layers):
key_value_cache_buffers.append(
torch.zeros((
batch_size,
2,
gpt_config.num_attention_heads,
total_seq_len,
head_size,
),
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype),
device='cuda'))
# compare context
step = 0
ctx_ids = torch.randint(100, (batch_size, seq_len)).int().cuda()
with torch.no_grad():
hf_outputs = hf_gpt.forward(ctx_ids, use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
ctx_context_lengths = seq_len * torch.ones(
(batch_size), dtype=torch.int32, device='cuda')
ctx_host_request_types = torch.tensor([0] * batch_size,
dtype=torch.int32)
ctx_position_ids = torch.tensor(range(seq_len),
dtype=torch.int32).reshape([
1, seq_len
]).expand([batch_size, seq_len]).cuda()
ctx_last_token_ids = ctx_context_lengths.clone()
# We need sequence_lengths start as context_lengths for step 0,
# and it will be added one after each step.
sequence_length_buffer = ctx_context_lengths.detach().clone()
if enable_remove_input_padding:
ctx_ids = ctx_ids.view([batch_size * seq_len])
ctx_position_ids = ctx_position_ids.view([batch_size * seq_len])
ctx_last_token_ids = torch.cumsum(ctx_last_token_ids, dim=0).int()
cache_indirections = [
torch.full((
batch_size,
beam_width,
total_seq_len,
),
0,
dtype=torch.int32,
device='cuda'),
torch.full((
batch_size,
beam_width,
total_seq_len,
),
0,
dtype=torch.int32,
device='cuda')
] # ping-pong buffers
perf_knob_tensor_size = 16
context_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
dtype=torch.int64)
if context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
context_runtime_perf_knobs[1] = 1 # enable_context_fmha_fp32_acc
host_context_progress = torch.tensor([0], dtype=torch.int64)
ctx_buffer = {
'input_ids': ctx_ids,
'context_lengths': ctx_context_lengths,
'host_request_types': ctx_host_request_types,
'position_ids': ctx_position_ids,
'last_token_ids': ctx_last_token_ids,
'cache_indirection': cache_indirections[0],
'host_runtime_perf_knobs': context_runtime_perf_knobs,
'host_context_progress': host_context_progress,
}
if enable_remove_input_padding:
ctx_buffer['host_context_lengths'] = ctx_context_lengths.cpu()
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
shape = (batch_size, 2, gpt_config.num_attention_heads, total_seq_len,
gpt_config.hidden_size // gpt_config.num_attention_heads)
ctx_buffer[f'host_max_attention_window_sizes'] = torch.tensor(
[total_seq_len] * gpt_config.num_hidden_layers, dtype=torch.int32)
ctx_shape[f'host_max_attention_window_sizes'] = (
gpt_config.num_hidden_layers, )
for i in range(gpt_config.num_hidden_layers):
ctx_shape[f'past_key_value_{i}'] = shape
ctx_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
ctx_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[i]
ctx_buffer['sequence_length'] = sequence_length_buffer
sequence_length_buffer = torch.add(sequence_length_buffer, step)
ctx_shape['sequence_length'] = ctx_buffer['sequence_length'].shape
ctx_buffer['host_past_key_value_lengths'] = ctx_context_lengths.cpu()
ctx_shape['host_past_key_value_lengths'] = ctx_buffer[
'host_past_key_value_lengths'].shape
ctx_buffer['host_sink_token_length'] = torch.tensor([0],
dtype=torch.int32)
ctx_shape['host_sink_token_length'] = (1, )
context = runtime.ctx_context
runtime._set_shape(context, ctx_shape)
runtime._set_buffer(context, ctx_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = ctx_buffer['logits']
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
compare_max_abs_error(ref, res, "context logits")
v_inner = 16 // (2 if dtype == 'float16' else 4)
for i in range(gpt_config.num_hidden_layers):
res_present_key_value = ctx_buffer[f'present_key_value_{i}']
past_key_value_tensor = res_present_key_value.permute(1, 0, 2, 3, 4)
key, value = past_key_value_tensor.chunk(2)
# TRT-LLM has the same cache layout for key and value:
# [bs, n_head, max_seq_len, head_size]
key = key.reshape(batch_size, gpt_config.num_attention_heads,
total_seq_len, head_size)
value = value.reshape(batch_size, gpt_config.num_attention_heads,
total_seq_len, head_size)
ref_present_key, ref_present_value = hf_outputs.past_key_values[i]
np.testing.assert_allclose(ref_present_key.cpu().numpy(),
key[:, :, :seq_len, :].cpu().numpy(),
atol=1e-1)
compare_max_abs_error(ref_present_key, key[:, :, :seq_len, :],
"ref_present_key")
np.testing.assert_allclose(ref_present_value.cpu().numpy(),
value[:, :, :seq_len, :].cpu().numpy(),
atol=1e-1)
compare_max_abs_error(ref_present_value, value[:, :, :seq_len, :],
"ref_present_value")
# compare generation
step = 1
step1_id = torch.randint(100, (batch_size, 1)).int().cuda()
gen_position_ids = torch.ones_like(step1_id).int().cuda() * seq_len
gen_context_lengths = ctx_context_lengths.clone()
gen_host_request_types = torch.tensor([1] * batch_size,
dtype=torch.int32)
gen_last_token_ids = torch.zeros_like(gen_context_lengths).int().cuda()
with torch.no_grad():
hf_outputs = hf_gpt.forward(
step1_id,
past_key_values=hf_outputs.past_key_values,
position_ids=gen_position_ids,
use_cache=True)
torch.cuda.synchronize()
ref = hf_outputs.logits[:, -1, :]
if enable_remove_input_padding:
step1_id = step1_id.view([batch_size])
gen_position_ids = gen_position_ids.view([batch_size])
gen_last_token_ids = torch.ones_like(
gen_context_lengths).int().cuda()
gen_last_token_ids = torch.cumsum(gen_last_token_ids, dim=0).int()
gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
dtype=torch.int64)
if context_fmha_flag == ContextFMHAType.enabled_with_fp32_acc:
gen_runtime_perf_knobs[1] = 1 # enable_context_fmha_fp32_acc
step1_buffer = {
'input_ids': step1_id,
'context_lengths': gen_context_lengths,
'host_request_types': gen_host_request_types,
'position_ids': gen_position_ids,
'last_token_ids': gen_last_token_ids,
'cache_indirection': cache_indirections[1],
'host_runtime_perf_knobs': gen_runtime_perf_knobs,
'host_context_progress': host_context_progress,
}
if enable_remove_input_padding:
step1_buffer['host_context_lengths'] = gen_context_lengths.cpu()
step1_shape = {k: v.shape for k, v in step1_buffer.items()}
step1_shape[f'host_max_attention_window_sizes'] = (
gpt_config.num_hidden_layers, )
for i in range(gpt_config.num_hidden_layers):
step1_shape[f'past_key_value_{i}'] = shape
step1_shape['sequence_length'] = (batch_size, )
step1_shape['host_past_key_value_lengths'] = (batch_size, )
step1_shape['host_sink_token_length'] = (1, )
step1_buffer[f'host_max_attention_window_sizes'] = torch.tensor(
[total_seq_len] * gpt_config.num_hidden_layers, dtype=torch.int32)
for i in range(gpt_config.num_hidden_layers):
step1_buffer[f'past_key_value_{i}'] = key_value_cache_buffers[i]
step1_buffer[f'present_key_value_{i}'] = key_value_cache_buffers[i]
# For step 1, the sequence_lengths = context_lengths + 1.
sequence_length_buffer = torch.add(sequence_length_buffer, step)
step1_buffer['sequence_length'] = sequence_length_buffer
step1_buffer['host_past_key_value_lengths'] = torch.tensor(
[seq_len + step - 1] * batch_size, dtype=torch.int32)
step1_buffer['host_sink_token_length'] = torch.tensor([0],
dtype=torch.int32)
context = runtime.context_1
runtime._set_shape(context, step1_shape)
runtime._set_buffer(context, step1_buffer)
runtime._run(context)
torch.cuda.synchronize()
res = step1_buffer['logits']
np.testing.assert_allclose(ref.cpu().numpy(),
res.cpu().numpy(),
atol=1e-1)
compare_max_abs_error(ref, res, "generation logits")
if __name__ == '__main__':
unittest.main()