mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Signed-off-by: gkswns0531 <gkswns0531@gmail.com> Signed-off-by: hanjuncho <gkswns0531@gmail.com> Co-authored-by: bhsueh_NV <11360707+byshiue@users.noreply.github.com>
211 lines
9.2 KiB
Python
211 lines
9.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional, Union
|
|
|
|
from ...layers import MoeConfig
|
|
from ...mapping import Mapping
|
|
from ..convert_utils import infer_dtype
|
|
from ..modeling_utils import PretrainedConfig, QuantConfig
|
|
|
|
|
|
class QWenConfig(PretrainedConfig):
|
|
|
|
def __init__(self,
|
|
*,
|
|
mlp_bias: bool = False,
|
|
attn_bias: bool = True,
|
|
rotary_base: float = 10000.0,
|
|
rotary_scaling: Optional[dict] = None,
|
|
disable_weight_only_quant_plugin: bool = False,
|
|
use_logn_attn: bool = False,
|
|
moe: Optional[Union[MoeConfig, dict]] = None,
|
|
num_labels: int = 1,
|
|
mlp_only_layers: Optional[list] = None,
|
|
decoder_sparse_step: int = 1,
|
|
**kwargs):
|
|
self.mlp_bias = mlp_bias
|
|
self.attn_bias = attn_bias
|
|
self.rotary_base = rotary_base
|
|
self.rotary_scaling = rotary_scaling
|
|
self.disable_weight_only_quant_plugin = disable_weight_only_quant_plugin
|
|
self.num_labels = num_labels
|
|
self.use_logn_attn = use_logn_attn
|
|
self.mlp_only_layers = mlp_only_layers or []
|
|
self.decoder_sparse_step = decoder_sparse_step
|
|
if moe is None:
|
|
# Legacy MOE config fields
|
|
moe = MoeConfig(num_experts=kwargs.pop('moe_num_experts', 0),
|
|
top_k=kwargs.pop('moe_top_k', 0),
|
|
normalization_mode=kwargs.pop(
|
|
'moe_normalization_mode',
|
|
MoeConfig.ExpertScaleNormalizationMode.NONE))
|
|
elif isinstance(moe, dict):
|
|
moe = MoeConfig.from_dict(moe)
|
|
assert isinstance(moe, MoeConfig)
|
|
self.moe = moe.validate()
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
def to_dict(self):
|
|
output = super().to_dict()
|
|
# Serialize the fields added in QWenConfig
|
|
output['mlp_bias'] = self.mlp_bias
|
|
output['attn_bias'] = self.attn_bias
|
|
output['rotary_base'] = self.rotary_base
|
|
output['rotary_scaling'] = self.rotary_scaling
|
|
output[
|
|
'disable_weight_only_quant_plugin'] = self.disable_weight_only_quant_plugin
|
|
output['use_logn_attn'] = self.use_logn_attn
|
|
output['mlp_only_layers'] = self.mlp_only_layers
|
|
output['decoder_sparse_step'] = self.decoder_sparse_step
|
|
output['moe'] = self.moe.to_dict()
|
|
return output
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_config_or_dir: Union[
|
|
str, 'transformers.PretrainedConfig'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs) -> "QWenConfig":
|
|
import transformers
|
|
trust_remote_code = kwargs.pop('trust_remote_code', True)
|
|
|
|
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
|
|
hf_config = hf_config_or_dir
|
|
else:
|
|
hf_config_dir = str(hf_config_or_dir)
|
|
|
|
hf_config = transformers.AutoConfig.from_pretrained(
|
|
hf_config_dir, trust_remote_code=trust_remote_code)
|
|
if hasattr(hf_config, 'llm_config'):
|
|
hf_config = hf_config.llm_config
|
|
|
|
qwen_type = hf_config.model_type
|
|
# lmms llava onevision qwen
|
|
if qwen_type == 'llava':
|
|
qwen_type = 'qwen2'
|
|
if hf_config.architectures and hf_config.architectures[
|
|
0] == 'LlavaQwenForCausalLM':
|
|
hf_config.architectures[0] = 'Qwen2ForCausalLM'
|
|
# hf llava onevision qwen
|
|
if qwen_type == 'llava_onevision':
|
|
hf_config = hf_config.text_config
|
|
qwen_type = f'{hf_config.model_type}_llava_onevision'
|
|
# Qwen2-Audio
|
|
if qwen_type == 'qwen2_audio':
|
|
hf_config = hf_config.text_config
|
|
hf_config.architectures = ['Qwen2ForCausalLM']
|
|
|
|
valid_types = ('qwen', 'qwen2', 'qwen2_moe', 'qwen2_llava_onevision',
|
|
'qwen2_vl', 'qwen2_audio', 'qwen3', 'qwen3_moe')
|
|
assert qwen_type in valid_types, f"Unsupported Qwen type: {qwen_type}, only {valid_types} are acceptable."
|
|
num_key_value_heads = getattr(hf_config, "num_key_value_heads",
|
|
hf_config.num_attention_heads)
|
|
head_dim = getattr(
|
|
hf_config, "head_dim",
|
|
hf_config.hidden_size // hf_config.num_attention_heads)
|
|
head_size = getattr(hf_config, "kv_channels", head_dim)
|
|
hidden_act = getattr(hf_config, "hidden_act", "silu")
|
|
if qwen_type in ("qwen2_moe", "qwen3_moe"):
|
|
hidden_act = "swiglu"
|
|
|
|
# Qwen3 models have no attention bias, while legacy models have bias
|
|
if qwen_type in ('qwen3', 'qwen3_moe'):
|
|
attn_bias = False # Qwen3 models have no attn bias
|
|
else:
|
|
attn_bias = True # Legacy Qwen models have attn bias
|
|
rotary_scaling = getattr(hf_config, "rope_scaling", None)
|
|
seq_length = getattr(hf_config, "seq_length", 8192)
|
|
use_logn_attn = getattr(hf_config, "use_logn_attn", False)
|
|
disable_weight_only_quant_plugin = kwargs.pop(
|
|
'disable_weight_only_quant_plugin', False)
|
|
if qwen_type == "qwen":
|
|
rms_norm_eps = hf_config.layer_norm_epsilon
|
|
rotary_base = getattr(hf_config, "rotary_emb_base", 10000.0)
|
|
else:
|
|
rms_norm_eps = hf_config.rms_norm_eps
|
|
rotary_base = getattr(hf_config, "rope_theta", 100000.0)
|
|
|
|
num_labels = 1
|
|
if hf_config.architectures[0] == "Qwen2ForSequenceClassification":
|
|
num_labels = hf_config.num_labels
|
|
|
|
moe_num_experts = getattr(hf_config, "num_experts", 0)
|
|
moe_top_k = getattr(hf_config, "num_experts_per_tok", 0)
|
|
moe_intermediate_size = getattr(hf_config, "moe_intermediate_size", 0)
|
|
moe_shared_expert_intermediate_size = getattr(
|
|
hf_config, "shared_expert_intermediate_size", 0)
|
|
moe_normalization_mode = MoeConfig.ExpertScaleNormalizationMode.NONE
|
|
|
|
# Add support for mlp_only_layers and decoder_sparse_step (Qwen3 MoE)
|
|
mlp_only_layers = getattr(hf_config, "mlp_only_layers", [])
|
|
decoder_sparse_step = getattr(hf_config, "decoder_sparse_step", 1)
|
|
|
|
moe_config = MoeConfig(num_experts=moe_num_experts,
|
|
top_k=moe_top_k,
|
|
normalization_mode=moe_normalization_mode)
|
|
moe_config.validate()
|
|
|
|
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
|
|
tie_word_embeddings = getattr(hf_config, 'tie_word_embeddings', False)
|
|
|
|
if qwen_type == 'qwen2_vl':
|
|
pe_type = 'mrope'
|
|
rotary_embedding_percentage = getattr(hf_config, 'rotary_pct', 1.0)
|
|
rotary_embedding_dim = getattr(
|
|
hf_config, 'rotary_dim',
|
|
int(hf_config.hidden_size / hf_config.num_attention_heads *
|
|
rotary_embedding_percentage))
|
|
rotary_scaling['type'] = 'mrope'
|
|
else:
|
|
pe_type = 'rope_gpt_neox'
|
|
rotary_embedding_dim = None
|
|
|
|
return cls(
|
|
architecture=hf_config.architectures[0],
|
|
dtype=dtype,
|
|
num_hidden_layers=hf_config.num_hidden_layers,
|
|
num_attention_heads=hf_config.num_attention_heads,
|
|
hidden_size=hf_config.hidden_size,
|
|
intermediate_size=hf_config.intermediate_size,
|
|
num_key_value_heads=num_key_value_heads,
|
|
head_size=head_size,
|
|
vocab_size=hf_config.vocab_size,
|
|
position_embedding_type=pe_type,
|
|
max_position_embeddings=hf_config.max_position_embeddings,
|
|
rotary_embedding_dim=rotary_embedding_dim,
|
|
hidden_act=hidden_act,
|
|
norm_epsilon=rms_norm_eps,
|
|
attn_bias=attn_bias,
|
|
rotary_base=rotary_base,
|
|
rotary_scaling=rotary_scaling,
|
|
disable_weight_only_quant_plugin=disable_weight_only_quant_plugin,
|
|
seq_length=seq_length,
|
|
use_logn_attn=use_logn_attn,
|
|
qwen_type=qwen_type,
|
|
moe_intermediate_size=moe_intermediate_size,
|
|
moe_shared_expert_intermediate_size=
|
|
moe_shared_expert_intermediate_size,
|
|
mlp_only_layers=mlp_only_layers,
|
|
decoder_sparse_step=decoder_sparse_step,
|
|
moe=moe_config,
|
|
mapping=mapping,
|
|
quantization=quant_config,
|
|
num_labels=num_labels,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs)
|