mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* beam_width and max_new_token Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> * remove beam_width Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> * remove min_length Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> * remove return_num_sequences Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com> --------- Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
57 lines
2.5 KiB
Python
57 lines
2.5 KiB
Python
### Generate text with customization
|
|
import tempfile
|
|
|
|
from tensorrt_llm.llmapi import LLM, BuildConfig, KvCacheConfig, SamplingParams
|
|
|
|
|
|
def main():
|
|
# The end user can customize the build configuration with the build_config class and other arguments borrowed from the lower-level APIs
|
|
build_config = BuildConfig()
|
|
build_config.max_batch_size = 128
|
|
build_config.max_num_tokens = 2048
|
|
|
|
build_config.max_beam_width = 4
|
|
|
|
# Model could accept HF model name or a path to local HF model.
|
|
|
|
llm = LLM(
|
|
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
|
build_config=build_config,
|
|
kv_cache_config=KvCacheConfig(
|
|
free_gpu_memory_fraction=0.8
|
|
), # Similar to `build_config`, you can also customize the runtime configuration with the `kv_cache_config`, `runtime_config`, `peft_cache_config` or \
|
|
# other arguments borrowed from the lower-level APIs.
|
|
)
|
|
|
|
# You can save the engine to disk and load it back later, the LLM class can accept either a HF model or a TRT-LLM engine.
|
|
llm.save(tempfile.mkdtemp())
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
|
|
# With SamplingParams, you can customize the sampling strategy, such as beam search, temperature, and so on.
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
n=4,
|
|
use_beam_search=True)
|
|
|
|
for output in llm.generate(prompts, sampling_params):
|
|
print(
|
|
f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
|
|
)
|
|
|
|
# Got output like
|
|
# Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
|
|
# Prompt: 'The president of the United States is', Generated text: 'likely to nominate a new Supreme Court justice to fill the seat vacated by the death of Antonin Scalia. The Senate should vote to confirm the'
|
|
# Prompt: 'The capital of France is', Generated text: 'Paris.'
|
|
# Prompt: 'The future of AI is', Generated text: 'an exciting time for us. We are constantly researching, developing, and improving our platform to create the most advanced and efficient model available. We are'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|