mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
231 lines
8.3 KiB
Python
Executable File
231 lines
8.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
import transformers
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.quantization import QuantMode
|
|
from tensorrt_llm.runtime import (ChatGLMGenerationSession, GenerationSession,
|
|
ModelConfig, SamplingConfig)
|
|
|
|
resources_dir = Path(
|
|
__file__).parent.parent.parent.parent.parent / "examples/chatglm"
|
|
sys.path.insert(0, str(resources_dir))
|
|
|
|
from run import parse_arguments # isort:skip
|
|
|
|
from build import find_engines # isort:skip
|
|
|
|
|
|
def generate(model_name, batch_size, beam_width):
|
|
|
|
print("generate expected %s output BatchSize=%d, BeamWidth=%d" %
|
|
(model_name, batch_size, beam_width))
|
|
|
|
args = parse_arguments(['-m', model_name])
|
|
if batch_size == 1:
|
|
args.input_text = args.input_text[:1]
|
|
elif batch_size > 2:
|
|
args.input_text += args.input_text[0] * (batch_size - 2)
|
|
args.beam_width = beam_width
|
|
args.tokenizer_dir = resources_dir / model_name
|
|
args.engine_dir = Path(__file__).parent.parent / ("models/rt_engine/" +
|
|
model_name)
|
|
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
|
|
config_path = args.engine_dir / 'config.json'
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
assert (config['builder_config']['name'] == model_name)
|
|
dtype = config['builder_config']['precision']
|
|
config['builder_config']['max_batch_size']
|
|
max_input_len = config['builder_config']['max_input_len']
|
|
max_output_len = config['builder_config']['max_output_len']
|
|
config['builder_config']['max_beam_width']
|
|
remove_input_padding = config['builder_config']['remove_input_padding']
|
|
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
|
|
world_size = config['builder_config']['tensor_parallel']
|
|
assert world_size == tensorrt_llm.mpi_world_size(
|
|
), f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
|
|
|
|
runtime_rank = tensorrt_llm.mpi_rank()
|
|
runtime_mapping = tensorrt_llm.Mapping(
|
|
world_size,
|
|
runtime_rank,
|
|
tp_size=world_size,
|
|
)
|
|
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
|
|
|
|
serialize_path = find_engines(
|
|
Path(args.engine_dir),
|
|
model_name=model_name,
|
|
dtype=dtype,
|
|
tp_size=world_size,
|
|
rank=runtime_rank,
|
|
)[0]
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
args.tokenizer_dir, trust_remote_code=True)
|
|
end_id = tokenizer.eos_token_id
|
|
pad_id = tokenizer.pad_token_id
|
|
if args.model_name in ["glm_10b"]:
|
|
sop_id = tokenizer.sop_token_id
|
|
eop_id = tokenizer.eop_token_id
|
|
input_text = args.input_text
|
|
tokenized = tokenizer(input_text,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
return_length=True)
|
|
input_ids = tokenized['input_ids'].int()
|
|
input_lengths = tokenized['length'].int()
|
|
max_input_len_real = torch.max(input_lengths)
|
|
if max_input_len_real > max_input_len:
|
|
print("Truncate input_length as %d" % max_input_len)
|
|
input_ids = input_ids[:, :max_input_len]
|
|
input_lengths = torch.where(input_lengths > max_input_len,
|
|
max_input_len, input_lengths)
|
|
else:
|
|
max_input_len = max_input_len_real
|
|
if args.model_name in ["glm_10b"]:
|
|
input_ids = torch.cat(
|
|
(input_ids, input_ids.new_full((batch_size, 1), sop_id)),
|
|
dim=-1,
|
|
)
|
|
input_lengths += 1
|
|
max_input_len_real += 1
|
|
|
|
if remove_input_padding:
|
|
input_ids_no_padding = torch.zeros(1,
|
|
torch.sum(input_lengths),
|
|
dtype=torch.int32)
|
|
lengths_acc = torch.cumsum(
|
|
torch.cat([torch.IntTensor([0]), input_lengths]),
|
|
dim=0,
|
|
)
|
|
for i in range(len(input_ids)):
|
|
input_ids_no_padding[
|
|
0, lengths_acc[i]:lengths_acc[i + 1]] = torch.IntTensor(
|
|
input_ids[i,
|
|
max_input_len - input_lengths[i]:max_input_len])
|
|
|
|
input_ids = input_ids_no_padding
|
|
|
|
elif use_gpt_attention_plugin:
|
|
# when using gpt attention plugin, inputs needs to align at the head
|
|
input_ids_padding_right = torch.zeros_like(input_ids) + end_id
|
|
for i, sample in enumerate(input_ids):
|
|
nPadding = 0
|
|
for token in sample:
|
|
if token == pad_id:
|
|
nPadding += 1
|
|
else:
|
|
break
|
|
input_ids_padding_right[
|
|
i, :len(sample[nPadding:])] = sample[nPadding:]
|
|
input_ids = input_ids_padding_right
|
|
|
|
model_config = ModelConfig(
|
|
vocab_size=config['builder_config']['vocab_size'],
|
|
num_layers=config['builder_config']['num_layers'],
|
|
num_heads=config['builder_config']['num_heads'] // world_size,
|
|
num_kv_heads=config['builder_config']['num_kv_heads'] // world_size,
|
|
hidden_size=config['builder_config']['hidden_size'] // world_size,
|
|
gpt_attention_plugin=use_gpt_attention_plugin,
|
|
remove_input_padding=config['builder_config']['remove_input_padding'],
|
|
model_name=model_name,
|
|
paged_kv_cache=config['builder_config']['paged_kv_cache'],
|
|
quant_mode=QuantMode(config['builder_config']['quant_mode']),
|
|
dtype=dtype,
|
|
)
|
|
|
|
sampling_config = SamplingConfig(
|
|
end_id=eop_id if args.model_name in ["glm_10b"] else end_id,
|
|
pad_id=pad_id,
|
|
num_beams=args.beam_width,
|
|
temperature=args.temperature,
|
|
top_k=args.top_k,
|
|
top_p=args.top_p,
|
|
)
|
|
sampling_config.random_seed = args.random_seed
|
|
|
|
with open(serialize_path, 'rb') as f:
|
|
engine_buffer = f.read()
|
|
|
|
if args.model_name in ["chatglm_6b", "glm_10b"]:
|
|
session = ChatGLMGenerationSession
|
|
else:
|
|
session = GenerationSession
|
|
decoder = session(
|
|
model_config,
|
|
engine_buffer,
|
|
runtime_mapping,
|
|
)
|
|
|
|
decoder.setup(
|
|
len(input_text),
|
|
max_input_len,
|
|
max_output_len,
|
|
beam_width,
|
|
)
|
|
output = decoder.decode(
|
|
input_ids.contiguous().cuda(),
|
|
input_lengths.contiguous().cuda(),
|
|
sampling_config,
|
|
output_sequence_lengths=True,
|
|
return_dict=True,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
output_ids = output["output_ids"]
|
|
output["sequence_lengths"]
|
|
|
|
data_path = Path(__file__).parent.parent / "data" / model_name
|
|
data_path.mkdir(parents=True, exist_ok=True)
|
|
nBS, nBM = input_ids.size(0), args.beam_width
|
|
np.save(
|
|
str(data_path) + "/inputId-BS%d-BM%d.npy" % (nBS, nBM),
|
|
input_ids.detach().cpu().numpy())
|
|
outputId = output_ids.detach().cpu().numpy()
|
|
|
|
nMaxOutputLength = 0
|
|
for single_output in outputId.reshape(nBS * nBM, -1):
|
|
if end_id in single_output:
|
|
nMaxOutputLength = max(nMaxOutputLength,
|
|
np.min(np.where(single_output == end_id)))
|
|
else:
|
|
nMaxOutputLength = len(single_output)
|
|
np.save(
|
|
str(data_path) + "/outputId-BS%d-BM%d.npy" % (nBS, nBM),
|
|
outputId[:, :, :(nMaxOutputLength + 1)])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
generate("chatglm_6b", batch_size=1, beam_width=1)
|
|
generate("chatglm2_6b", batch_size=1, beam_width=1)
|
|
generate("chatglm2_6b", batch_size=2, beam_width=1)
|
|
generate("chatglm2_6b", batch_size=1, beam_width=2)
|
|
generate("chatglm3_6b", batch_size=1, beam_width=1)
|
|
generate("chatglm3_6b", batch_size=2, beam_width=1)
|
|
generate("chatglm3_6b", batch_size=1, beam_width=2)
|
|
print("Done.")
|