TensorRT-LLMs/examples/bloom/build.py
Kaiyu Xie 8dd9c91470
Update TensorRT-LLM (#539)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-04 18:06:59 +08:00

561 lines
22 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from pathlib import Path
import onnx
# isort: off
import torch
import torch.multiprocessing as mp
import tensorrt as trt
# isort: on
from onnx import TensorProto, helper
from transformers import BloomConfig, BloomForCausalLM
import tensorrt_llm
from tensorrt_llm import profiler
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
# isort: off
from weight import (check_embedding_share, load_from_bin, load_from_hf_bloom,
load_from_hf_checkpoint, parse_config)
# isort: on
MODEL_NAME = "bloom"
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--bin_model_dir', type=str, default=None)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'float16'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=250680)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--mlp_hidden_size', type=int, default=None)
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
)
parser.add_argument(
'--use_layernorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'],
help=
"Activates layernorm plugin. You can specify the plugin dtype or leave blank to use the model dtype."
)
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument(
'--output_dir',
type=str,
default='bloom_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument(
'--use_lookup_plugin',
nargs='?',
const=None,
default=False,
choices=['float16', 'float32', 'bfloat16'],
help="Activates the lookup plugin which enables embedding sharing.")
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
args = parser.parse_args()
logger.set_level(args.log_level)
if args.model_dir is not None:
hf_config = BloomConfig.from_pretrained(args.model_dir)
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
args.n_layer = hf_config.num_hidden_layers
args.vocab_size = hf_config.vocab_size
elif args.bin_model_dir is not None:
logger.info(f"Setting model configuration from {args.bin_model_dir}.")
n_embd, n_head, n_layer, vocab_size, _, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size = parse_config(
Path(args.bin_model_dir) / "config.ini")
args.n_embd = n_embd
args.n_head = n_head
args.n_layer = n_layer
args.vocab_size = vocab_size
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
args.quant_mode = QuantMode.use_weight_only(
args.weight_only_precision == 'int4')
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
kv_dtype = str_dtype_to_trt(args.dtype)
profiler.print_memory_usage(f'Rank {rank} Engine build starts')
# Share_embedding_table can be set True only when:
# 1) the weight for lm_head() does not exist while other weights exist
# 2) For multiple-processes, use_parallel_embedding=True and embedding_sharding_dim == 0.
# Besides, for TensorRT 9.0, we can observe the engine size reduction when the lookup and gemm plugin are enabled.
share_embedding_table = False
if args.use_embedding_sharing:
if args.world_size > 1:
if args.model_dir is not None and args.embedding_sharding_dim == 0 and args.use_parallel_embedding:
share_embedding_table = check_embedding_share(args.model_dir)
else:
if args.model_dir is not None:
share_embedding_table = check_embedding_share(args.model_dir)
if not share_embedding_table:
logger.warning(f'Cannot share the embedding lookup table.')
if share_embedding_table:
logger.info(
'Engine will share embedding and language modeling weights.')
# Initialize Module
tensorrt_llm_bloom = tensorrt_llm.models.BloomForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
max_position_embeddings=args.n_positions,
dtype=kv_dtype,
mapping=Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size), # TP only
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim,
share_embedding_table=share_embedding_table,
quant_mode=args.quant_mode)
if args.use_weight_only or args.use_smooth_quant:
tensorrt_llm_bloom = quantize_model(tensorrt_llm_bloom, args.quant_mode)
if args.model_dir is not None:
logger.info(f'Loading HF BLOOM ... from {args.model_dir}')
tik = time.time()
if not args.load_by_shard:
hf_bloom = BloomForCausalLM.from_pretrained(args.model_dir,
torch_dtype="auto")
print(hf_bloom)
load_from_hf_bloom(
tensorrt_llm_bloom,
hf_bloom,
rank,
args.world_size,
fp16=(args.dtype == 'float16'),
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=share_embedding_table)
del hf_bloom
else:
load_from_hf_checkpoint(
tensorrt_llm_bloom,
model_dir=args.model_dir,
dtype=args.dtype,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=share_embedding_table)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF BLOOM loaded. Total time: {t}')
elif args.bin_model_dir is not None:
load_from_bin(tensorrt_llm_bloom,
args.bin_model_dir,
rank,
args.world_size,
args.dtype,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=share_embedding_table)
profiler.print_memory_usage(f'Rank {rank} model weight loaded.')
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=args.use_layernorm_plugin)
if args.use_lookup_plugin:
# Use the plugin for the embedding parallelism
network.plugin_config.set_lookup_plugin(dtype=args.dtype)
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.multi_block_mode:
network.plugin_config.enable_mmha_multi_block_mode()
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_layernorm_quantization_plugin(
dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
elif args.use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.dtype)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_bloom.named_parameters())
# Forward
inputs = tensorrt_llm_bloom.prepare_inputs(args.max_batch_size,
args.max_input_len,
args.max_output_len, True,
args.max_beam_width)
tensorrt_llm_bloom(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_bloom.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = kv_dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
# NOTE: when only int8 kv cache is used together with paged kv cache no int8 tensors are exposed to TRT
int8_trt_flag = args.quant_mode.has_act_or_weight_quant(
) or args.quant_mode.has_int8_kv_cache()
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_beam_width=args.max_beam_width,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
int8=int8_trt_flag,
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed)
builder_config.trt_builder_config.builder_optimization_level = 1
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
del engine
profiler.print_memory_usage(f'Rank {cur_rank} Engine serialized')
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')