TensorRT-LLMs/examples/chatglm/weight.py
Kaiyu Xie 587d063e6d
Update TensorRT-LLM (#506)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-30 16:46:22 +08:00

591 lines
24 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from pathlib import Path
from typing import Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
import transformers
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.quantized.quant import get_dummy_quant_scales
from tensorrt_llm.quantization import QuantMode
def split(weight: np.ndarray, tp_size: int, rank: int = 0, dim: int = 0):
if tp_size == 1:
return weight
elif weight.ndim == 1:
return np.ascontiguousarray(np.split(weight, tp_size)[rank].copy())
return np.ascontiguousarray(
np.split(weight, tp_size, axis=dim)[rank].copy())
def split_matrix(weight: np.ndarray, tp_size: int, rank: int, dim: int):
return np.ascontiguousarray(split(weight, tp_size, rank, dim=dim))
def tile_kv_weight_bias(v, kv_num_head, tp_size):
head_size = v.shape[0] // kv_num_head
reps = tp_size // kv_num_head
if v.ndim == 1:
v = v.reshape(kv_num_head, head_size)[:, None, :]
v = v.expand(kv_num_head, reps, head_size).reshape(-1).clone()
else:
hidden_size = v.shape[1]
v = v.reshape(kv_num_head, head_size, hidden_size)[:, None, :, :]
v = v.expand(kv_num_head, reps, head_size,
hidden_size).reshape(-1, hidden_size).clone()
return v
def split_qkv(v, tp_size, rank, hidden_size, num_heads, num_kv_heads):
head_size = hidden_size // num_heads
if tp_size == 1:
return v
assert v.shape[0] == hidden_size + head_size * num_kv_heads * 2
query = v[:hidden_size]
key = v[hidden_size:hidden_size + head_size * num_kv_heads]
value = v[hidden_size + head_size * num_kv_heads:hidden_size +
head_size * num_kv_heads * 2]
if num_kv_heads < tp_size:
key = tile_kv_weight_bias(key, num_kv_heads, tp_size)
value = tile_kv_weight_bias(value, num_kv_heads, tp_size)
assert (key.shape[0] % (tp_size * head_size)) == 0
assert (value.shape[0] % (tp_size * head_size)) == 0
q_tmp = torch.chunk(query, tp_size, dim=0)[rank]
k_tmp = torch.chunk(key, tp_size, dim=0)[rank]
v_tmp = torch.chunk(value, tp_size, dim=0)[rank]
return torch.concatenate([q_tmp, k_tmp, v_tmp], dim=0).contiguous()
def load_quant_weight(src, value_dst, scale_dst, plugin_weight_only_quant_type):
v = torch.transpose(src, dim0=0, dim1=1).contiguous()
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
value_dst.value = torch_to_numpy(processed_torch_weights)
scale_dst.value = torch_to_numpy(torch_weight_scales)
def load_from_hf(
trt_model,
hf_model_dir,
mapping=Mapping(),
dtype="float32",
model_name=None,
multi_query_mode=False,
):
assert model_name is not None, "Model name must be set"
tensorrt_llm.logger.info("Loading weights from HF")
if not Path(hf_model_dir).exists():
tensorrt_llm.logger.info(
"No weight file found from %s, use random weights" % hf_model_dir)
return trt_model
tik = time.time()
hf_model = transformers.AutoModel.from_pretrained(hf_model_dir,
trust_remote_code=True)
hidden_size = hf_model.config.hidden_size
num_heads = hf_model.config.num_attention_heads
num_layers = hf_model.config.num_layers
torch_type = str_dtype_to_torch(dtype)
quant_mode = getattr(trt_model, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
layers_per_pipeline_stage = num_layers // mapping.pp_size
layers_range = list(
range(mapping.pp_rank * layers_per_pipeline_stage,
(mapping.pp_rank + 1) * layers_per_pipeline_stage))
feed_weight_count = 0
if model_name in ["chatglm_6b", "glm_10b"]:
num_kv_heads = hf_model.config.num_attention_heads
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
num_kv_heads = hf_model.config.multi_query_group_num
if mapping.is_first_pp_rank():
# Embedding
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.word_embeddings.weight.to(
torch_type).detach()
trt_model.embedding.weight.value = torch_to_numpy(weight)
feed_weight_count += 1
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.embedding.word_embeddings.weight.to(
torch_type).detach()
trt_model.embedding.weight.value = torch_to_numpy(weight)
feed_weight_count += 1
elif model_name in ["glm_10b"]:
weight = hf_model.word_embeddings.weight.to(torch_type).detach()
trt_model.embedding.weight.value = torch_to_numpy(weight)
weight = hf_model.transformer.position_embeddings.weight.to(
torch_type).detach()
trt_model.position_embeddings.weight.value = torch_to_numpy(weight)
weight = hf_model.transformer.block_position_embeddings.weight.to(
torch_type).detach()
trt_model.block_embeddings.weight.value = torch_to_numpy(weight)
feed_weight_count += 3
if mapping.is_last_pp_rank():
# Final normalization
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.final_layernorm.weight.to(
torch_type).detach()
trt_model.final_norm.weight.value = torch_to_numpy(weight)
bias = hf_model.transformer.final_layernorm.bias.to(
torch_type).detach()
trt_model.final_norm.bias.value = torch_to_numpy(bias)
feed_weight_count += 2
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.final_layernorm.weight.to(
torch_type).detach()
trt_model.final_norm.weight.value = torch_to_numpy(weight)
feed_weight_count += 1
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.final_layernorm.weight.to(
torch_type).detach()
trt_model.final_norm.weight.value = torch_to_numpy(weight)
bias = hf_model.transformer.final_layernorm.bias.to(
torch_type).detach()
trt_model.final_norm.bias.value = torch_to_numpy(bias)
feed_weight_count += 2
# Final LM
if model_name in ["chatglm_6b"]:
weight = hf_model.lm_head.weight.to(torch_type).detach()
if weight.shape[0] % mapping.tp_size != 0:
pad_width = trt_model.lm_head.out_features * mapping.tp_size - weight.shape[
0]
weight = F.pad(weight, (0, 0, 0, pad_width))
split_weight = torch.chunk(weight, mapping.tp_size,
dim=0)[mapping.rank]
trt_model.lm_head.weight.value = torch_to_numpy(split_weight)
feed_weight_count += 1
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.output_layer.weight.to(
torch_type).detach()
if weight.shape[0] % mapping.tp_size != 0:
pad_width = trt_model.lm_head.out_features * mapping.tp_size - weight.shape[
0]
weight = F.pad(weight, (0, 0, 0, pad_width))
split_weight = torch.chunk(weight, mapping.tp_size,
dim=0)[mapping.rank]
trt_model.lm_head.weight.value = torch_to_numpy(split_weight)
feed_weight_count += 1
elif model_name in ["glm_10b"]:
weight = hf_model.word_embeddings.weight.to(torch_type).detach()
if weight.shape[0] % mapping.tp_size != 0:
pad_width = trt_model.lm_head.out_features * mapping.tp_size - weight.shape[
0]
weight = F.pad(weight, (0, 0, 0, pad_width))
split_weight = torch.chunk(weight, mapping.tp_size,
dim=0)[mapping.rank]
trt_model.lm_head.weight.value = torch_to_numpy(split_weight)
feed_weight_count += 1
# Weight per layer
for layer_idx in range(num_layers):
if layer_idx not in layers_range:
continue
i = int(layer_idx) - mapping.pp_rank * layers_per_pipeline_stage
if i >= num_layers:
continue
# Pre normalization
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.layers[i].input_layernorm.weight.to(
torch_type).detach()
trt_model.layers[i].pre_norm.weight.value = torch_to_numpy(weight)
bias = hf_model.transformer.layers[i].input_layernorm.bias.to(
torch_type).detach()
trt_model.layers[i].pre_norm.bias.value = torch_to_numpy(bias)
feed_weight_count += 2
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.layers[
i].input_layernorm.weight.to(torch_type).detach()
trt_model.layers[i].pre_norm.weight.value = torch_to_numpy(weight)
feed_weight_count += 1
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.layers[i].input_layernorm.weight.to(
torch_type).detach()
trt_model.layers[i].pre_norm.weight.value = torch_to_numpy(weight)
bias = hf_model.transformer.layers[i].input_layernorm.bias.to(
torch_type).detach()
trt_model.layers[i].pre_norm.bias.value = torch_to_numpy(bias)
feed_weight_count += 2
# QKV multiplication weight
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.layers[
i].attention.query_key_value.weight.to(torch_type).detach()
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.layers[
i].self_attention.query_key_value.weight.to(
torch_type).detach()
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.layers[
i].attention.query_key_value.weight.to(torch_type).detach()
split_weight = split_qkv(weight, mapping.tp_size, mapping.tp_rank,
hidden_size, num_heads, num_kv_heads)
dst = trt_model.layers[i].attention.qkv
if use_weight_only:
load_quant_weight(
src=split_weight,
value_dst=dst.weight,
scale_dst=dst.per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
else:
dst.weight.value = torch_to_numpy(split_weight)
feed_weight_count += 1
# QKV multiplication bias
if model_name in ["chatglm_6b"]:
bias = hf_model.transformer.layers[
i].attention.query_key_value.bias.to(torch_type).detach()
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
bias = hf_model.transformer.encoder.layers[
i].self_attention.query_key_value.bias.to(torch_type).detach()
elif model_name in ["glm_10b"]:
bias = hf_model.transformer.layers[
i].attention.query_key_value.bias.to(torch_type).detach()
split_bias = split_qkv(bias, mapping.tp_size, mapping.tp_rank,
hidden_size, num_heads, num_kv_heads)
trt_model.layers[i].attention.qkv.bias.value = torch_to_numpy(
split_bias)
feed_weight_count += 1
# Dense multiplication weight
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.layers[i].attention.dense.weight.to(
torch_type).detach()
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.layers[
i].self_attention.dense.weight.to(torch_type).detach()
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.layers[i].attention.dense.weight.to(
torch_type).detach()
split_weight = torch.chunk(weight, mapping.tp_size, dim=1)[mapping.rank]
dst = trt_model.layers[i].attention.dense
if use_weight_only:
load_quant_weight(
src=split_weight,
value_dst=dst.weight,
scale_dst=dst.per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
else:
dst.weight.value = np.ascontiguousarray(
torch_to_numpy(split_weight))
feed_weight_count += 1
# Dense multiplication bias, only GLM-10B
if model_name in ["glm_10b"]:
bias = hf_model.transformer.layers[i].attention.dense.bias.to(
torch_type).detach()
split_bias = split_qkv(bias, mapping.tp_size, mapping.tp_rank,
hidden_size, num_heads, num_kv_heads)
trt_model.layers[i].attention.dense.bias.value = torch_to_numpy(
split_bias)
feed_weight_count += 1
# Post normalization
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.layers[
i].post_attention_layernorm.weight.to(torch_type).detach()
trt_model.layers[i].post_norm.weight.value = torch_to_numpy(weight)
bias = hf_model.transformer.layers[
i].post_attention_layernorm.bias.to(torch_type).detach()
trt_model.layers[i].post_norm.bias.value = torch_to_numpy(bias)
feed_weight_count += 2
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.layers[
i].post_attention_layernorm.weight.to(torch_type).detach()
trt_model.layers[i].post_norm.weight.value = torch_to_numpy(weight)
feed_weight_count += 1
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.layers[
i].post_attention_layernorm.weight.to(torch_type).detach()
trt_model.layers[i].post_norm.weight.value = torch_to_numpy(weight)
bias = hf_model.transformer.layers[
i].post_attention_layernorm.bias.to(torch_type).detach()
trt_model.layers[i].post_norm.bias.value = torch_to_numpy(bias)
feed_weight_count += 2
# Multilayer perceptron h -> 4h weight
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.layers[i].mlp.dense_h_to_4h.weight.to(
torch_type).detach()
split_weight = torch.chunk(weight, mapping.tp_size,
dim=0)[mapping.rank]
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.layers[
i].mlp.dense_h_to_4h.weight.to(torch_type).detach()
split_weight = torch.chunk(weight, 2 * mapping.tp_size, dim=0)
# swap first and second half weight in columns to adapt trt_llm Swiglu
split_weight = torch.cat(
[
split_weight[mapping.rank + mapping.tp_size],
split_weight[mapping.rank],
],
dim=0,
)
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.layers[i].mlp.dense_h_to_4h.weight.to(
torch_type).detach()
split_weight = torch.chunk(weight, mapping.tp_size,
dim=0)[mapping.rank]
dst = trt_model.layers[i].mlp.fc
if use_weight_only:
load_quant_weight(
src=split_weight,
value_dst=dst.weight,
scale_dst=dst.per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
else:
dst.weight.value = torch_to_numpy(split_weight)
feed_weight_count += 1
# Multilayer perceptron h -> 4h bias, only GLM-10B
if model_name in ["glm_10b"]:
bias = hf_model.transformer.layers[i].mlp.dense_h_to_4h.bias.to(
torch_type).detach()
split_bias = split_qkv(bias, mapping.tp_size, mapping.tp_rank,
hidden_size, num_heads, num_kv_heads)
trt_model.layers[i].mlp.fc.bias.value = torch_to_numpy(split_bias)
feed_weight_count += 1
# Multilayer perceptron 4h -> h weight
if model_name in ["chatglm_6b"]:
weight = hf_model.transformer.layers[i].mlp.dense_4h_to_h.weight.to(
torch_type).detach()
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight = hf_model.transformer.encoder.layers[
i].mlp.dense_4h_to_h.weight.to(torch_type).detach()
elif model_name in ["glm_10b"]:
weight = hf_model.transformer.layers[i].mlp.dense_4h_to_h.weight.to(
torch_type).detach()
split_weight = torch.chunk(weight, mapping.tp_size, dim=1)[mapping.rank]
dst = trt_model.layers[i].mlp.proj
if use_weight_only:
load_quant_weight(
src=split_weight,
value_dst=dst.weight,
scale_dst=dst.per_channel_scale,
plugin_weight_only_quant_type=plugin_weight_only_quant_type)
else:
dst.weight.value = np.ascontiguousarray(
torch_to_numpy(split_weight))
feed_weight_count += 1
# Multilayer perceptron 4h -> h bias, only GLM-10B
if model_name in ["glm_10b"]:
bias = hf_model.transformer.layers[i].mlp.dense_4h_to_h.bias.to(
torch_type).detach()
split_bias = split_qkv(bias, mapping.tp_size, mapping.tp_rank,
hidden_size, num_heads, num_kv_heads)
trt_model.layers[i].mlp.proj.bias.value = torch_to_numpy(split_bias)
feed_weight_count += 1
del hf_model
tok = time.time()
# Final check
if model_name in ["chatglm_6b"]:
weight_count = 4 + num_layers * 9
elif model_name in [
"chatglm2_6b",
"chatglm2_6b_32k",
"chatglm3_6b",
"chatglm3_6b_base",
"chatglm3_6b_32k",
]:
weight_count = 3 + num_layers * 7
elif model_name in ["glm_10b"]:
weight_count = 6 + num_layers * 12
if feed_weight_count < weight_count:
tensorrt_llm.logger.error("%d weights not loaded from HF" %
(weight_count - feed_weight_count))
return None
tensorrt_llm.logger.info("Loading weights finish in %.2fs" % (tok - tik))
return trt_model
def get_scaling_factors(
model_path: Union[str, Path],
num_layers: int,
quant_mode: Optional[QuantMode] = None,
) -> Optional[Dict[str, List[int]]]:
""" Get the scaling factors for Falcon model
Returns a dictionary of scaling factors for the selected layers of the
Falcon model.
Args:
model_path (str): Path to the quantized Falcon model
layers (list): List of layers to get the scaling factors for. If None,
all layers are selected.
Returns:
dict: Dictionary of scaling factors for the selected layers of the
Falcon model.
example:
{
'qkv_act': qkv_act_scale,
'qkv_weights': qkv_weights_scale,
'qkv_out' : qkv_outputs_scale,
'dense_act': dense_act_scale,
'dense_weights': dense_weights_scale,
'fc_act': fc_act_scale,
'fc_weights': fc_weights_scale,
'proj_act': proj_act_scale,
'proj_weights': proj_weights_scale,
}
"""
if model_path is None:
logger.warning(f"--quantized_fp8_model_path not specified. "
f"Initialize quantization scales automatically.")
return get_dummy_quant_scales(num_layers)
weight_dict = np.load(model_path)
# yapf: disable
scaling_factor = {
'qkv_act': [],
'qkv_weights': [],
'qkv_output': [],
'dense_act': [],
'dense_weights': [],
'fc_act': [],
'fc_weights': [],
'proj_act': [],
'proj_weights': [],
}
for layer in range(num_layers):
scaling_factor['qkv_act'].append(max(
weight_dict[f'_np:layers:{layer}:attention:qkv:q:activation_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:k:activation_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:v:activation_scaling_factor'].item()
))
scaling_factor['qkv_weights'].append(max(
weight_dict[f'_np:layers:{layer}:attention:qkv:q:weights_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:k:weights_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:v:weights_scaling_factor'].item()
))
if quant_mode is not None and quant_mode.has_fp8_kv_cache():
# Not calibrarting KV cache.
scaling_factor['qkv_output'].append(1.0)
scaling_factor['dense_act'].append(weight_dict[f'_np:layers:{layer}:attention:dense:activation_scaling_factor'].item())
scaling_factor['dense_weights'].append(weight_dict[f'_np:layers:{layer}:attention:dense:weights_scaling_factor'].item())
scaling_factor['fc_act'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:activation_scaling_factor'].item())
scaling_factor['fc_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:weights_scaling_factor'].item())
scaling_factor['proj_act'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:activation_scaling_factor'].item())
scaling_factor['proj_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:weights_scaling_factor'].item())
# yapf: enable
for k, v in scaling_factor.items():
assert len(v) == num_layers, \
f'Expect scaling factor {k} of length {num_layers}, got {len(v)}'
return scaling_factor