TensorRT-LLMs/cpp/tensorrt_llm/runtime/bufferManager.cpp
2023-10-10 23:22:17 -07:00

195 lines
6.2 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bufferManager.h"
#include "tensorrt_llm/common/assert.h"
#include "tllmBuffers.h"
#include <cstring>
#include <cuda_runtime_api.h>
#include <limits>
#include <memory>
#include <unordered_set>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
BufferManager::BufferManager(CudaStreamPtr stream)
: mStream{std::move(stream)}
{
TLLM_CHECK_WITH_INFO(static_cast<bool>(mStream), "Undefined CUDA stream");
thread_local static std::unordered_set<int> initializedDevices(8);
auto const device = mStream->getDevice();
if (initializedDevices.find(device) == initializedDevices.end())
{
initializedDevices.insert(device);
initMemoryPool(device);
}
}
BufferManager::IBufferPtr BufferManager::gpu(std::size_t size, nvinfer1::DataType type) const
{
return std::make_unique<DeviceBuffer>(size, type, CudaAllocatorAsync{mStream});
}
BufferManager::ITensorPtr BufferManager::gpu(nvinfer1::Dims dims, nvinfer1::DataType type) const
{
return std::make_unique<DeviceTensor>(dims, type, CudaAllocatorAsync{mStream});
}
BufferManager::IBufferPtr BufferManager::cpu(std::size_t size, nvinfer1::DataType type)
{
return std::make_unique<HostBuffer>(size, type);
}
BufferManager::ITensorPtr BufferManager::cpu(nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<HostTensor>(dims, type);
}
BufferManager::IBufferPtr BufferManager::pinned(std::size_t size, nvinfer1::DataType type)
{
return std::make_unique<PinnedBuffer>(size, type);
}
BufferManager::ITensorPtr BufferManager::pinned(nvinfer1::Dims dims, nvinfer1::DataType type)
{
return std::make_unique<PinnedTensor>(dims, type);
}
void BufferManager::setZero(IBuffer& buffer) const
{
if (buffer.getMemoryType() == MemoryType::kGPU)
{
TLLM_CUDA_CHECK(cudaMemsetAsync(buffer.data(), 0, buffer.getSizeInBytes(), mStream->get()));
}
else
{
std::memset(buffer.data(), 0, buffer.getSizeInBytes());
}
}
void BufferManager::copy(void const* src, IBuffer& dst, MemoryType srcType) const
{
if (dst.getSizeInBytes() > 0)
{
if (srcType != MemoryType::kGPU && dst.getMemoryType() != MemoryType::kGPU)
{
std::memcpy(dst.data(), src, dst.getSizeInBytes());
}
else
{
TLLM_CUDA_CHECK(cudaMemcpyAsync(dst.data(), src, dst.getSizeInBytes(), cudaMemcpyDefault, mStream->get()));
}
}
}
void BufferManager::copy(IBuffer const& src, void* dst, MemoryType dstType) const
{
if (src.getSizeInBytes() > 0)
{
if (src.getMemoryType() != MemoryType::kGPU && dstType != MemoryType::kGPU)
{
std::memcpy(dst, src.data(), src.getSizeInBytes());
}
else
{
TLLM_CUDA_CHECK(cudaMemcpyAsync(dst, src.data(), src.getSizeInBytes(), cudaMemcpyDefault, mStream->get()));
}
}
}
void BufferManager::copy(IBuffer const& src, IBuffer& dst) const
{
TLLM_CHECK_WITH_INFO(src.getDataType() == dst.getDataType(), "Incompatible data types");
TLLM_CHECK_WITH_INFO(src.getSizeInBytes() == dst.getSizeInBytes(),
tc::fmtstr("Incompatible buffer sizes: %lu != %lu", src.getSizeInBytes(), dst.getSizeInBytes()));
copy(src, dst.data(), dst.getMemoryType());
}
BufferManager::IBufferPtr BufferManager::allocate(
MemoryType memoryType, std::size_t size, nvinfer1::DataType type) const
{
switch (memoryType)
{
case MemoryType::kCPU: return cpu(size, type);
case MemoryType::kGPU: return gpu(size, type);
case MemoryType::kPINNED: return pinned(size, type);
default: TLLM_THROW("Unknown memory type");
}
}
BufferManager::ITensorPtr BufferManager::allocate(
MemoryType memoryType, nvinfer1::Dims dims, nvinfer1::DataType type) const
{
switch (memoryType)
{
case MemoryType::kCPU: return cpu(dims, type);
case MemoryType::kGPU: return gpu(dims, type);
case MemoryType::kPINNED: return pinned(dims, type);
default: TLLM_THROW("Unknown memory type");
}
}
BufferManager::IBufferPtr BufferManager::copyFrom(IBuffer const& src, MemoryType memoryType) const
{
auto dst = allocate(memoryType, src.getSize(), src.getDataType());
copy(src, *dst);
return dst;
}
BufferManager::ITensorPtr BufferManager::copyFrom(ITensor const& src, MemoryType memoryType) const
{
auto dst = allocate(memoryType, src.getShape(), src.getDataType());
copy(src, *dst);
return dst;
}
CudaStream const& BufferManager::getStream() const
{
return *mStream;
}
void BufferManager::initMemoryPool(int device)
{
auto const deviceCount = tc::getDeviceCount();
::cudaMemPool_t memPool;
TLLM_CUDA_CHECK(cudaDeviceGetDefaultMemPool(&memPool, device));
for (auto peerDevice = 0; peerDevice < deviceCount; ++peerDevice)
{
if (peerDevice == device)
{
continue;
}
int peerAccessAvailable = 0;
TLLM_CUDA_CHECK(cudaDeviceCanAccessPeer(&peerAccessAvailable, device, peerDevice));
if (!peerAccessAvailable)
{
TLLM_LOG_WARNING("Device " + std::to_string(device) + " peer access Device " + std::to_string(peerDevice)
+ " is not available.");
continue;
}
::cudaMemAccessDesc desc{};
desc.location.type = cudaMemLocationTypeDevice;
desc.location.id = peerDevice;
desc.flags = cudaMemAccessFlagsProtReadWrite;
TLLM_CUDA_CHECK(cudaMemPoolSetAccess(memPool, &desc, 1));
}
// set memory pool threshold to avoid shrinking the pool
auto maxThreshold = std::numeric_limits<std::uint64_t>::max();
TLLM_CUDA_CHECK(cudaMemPoolSetAttribute(memPool, cudaMemPoolAttrReleaseThreshold, &maxThreshold));
}