TensorRT-LLMs/cpp/tensorrt_llm/runtime/runtimeBuffers.cpp
2023-10-10 23:22:17 -07:00

617 lines
24 KiB
C++

//
// Created by martinma on 5/24/23.
//
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/runtimeBuffers.h"
#include <algorithm>
#include <iostream>
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/tllmRuntime.h"
#include "tensorrt_llm/runtime/utils/sessionUtils.h"
using namespace tensorrt_llm::runtime;
RuntimeBuffers::GenerationConfig RuntimeBuffers::GenerationConfig::fromInput(ITensor const& inputIds,
ITensor const& inputLengthsHost, bool const inputPacked, SizeType const beamWidth, SizeType const maxSequenceLength,
std::optional<SizeType> const& maxNewTokensOpt, BufferManager& manager)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = static_cast<SizeType>(inputLengthsHost.getSize());
auto const* inputLengthsPtr = bufferCast<SizeType>(inputLengthsHost);
SizeType maxInputLength = *std::max_element(inputLengthsPtr, inputLengthsPtr + batchSize);
auto const& inputShape = inputIds.getShape();
SizeType inputLengthSum{0};
if (inputPacked)
{
inputLengthSum = std::reduce(inputLengthsPtr, inputLengthsPtr + batchSize);
TLLM_CHECK_WITH_INFO(inputShape.d[0] == 1 && inputShape.d[1] == inputLengthSum,
"Packed input must have shape [1, <sum of input lengths>].");
}
else
{
TLLM_CHECK_WITH_INFO(inputShape.d[0] == batchSize && inputShape.d[1] >= maxInputLength,
"Padded input must have shape [batch size, max input length]");
maxInputLength = inputShape.d[1];
}
auto const maxNewTokens = maxNewTokensOpt.value_or(maxSequenceLength - maxInputLength);
TLLM_CHECK_WITH_INFO(1 <= maxNewTokens && maxNewTokens <= maxSequenceLength - maxInputLength,
"Max input length is equal to or larger that maxSequenceLength given in setup. No new tokens can be "
"generated.");
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
return GenerationConfig{batchSize, beamWidth, maxInputLength, maxNewTokens, maxSequenceLength, inputLengthSum};
}
void RuntimeBuffers::clear()
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
contextLengthsHost = nullptr;
contextLengthsDevice = nullptr;
logits = nullptr;
sequenceLengths = nullptr;
pastKeyValueLengths = nullptr;
attentionMask = nullptr;
positionIds = nullptr;
lastTokenIds = nullptr;
requestTypes = nullptr;
presentKeysVals.clear();
presentKeysValsAlt.clear();
kvCacheBlockPointersHost = nullptr;
kvCacheBlockPointersDevice = nullptr;
cacheIndirectionDecoderInput = nullptr;
cacheIndirectionDecoderOutput = nullptr;
hiddenStates = nullptr;
allocated = false;
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::create(TllmRuntime& runtime, GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto& manager = runtime.getBufferManager();
auto& engine = runtime.getEngine();
if (worldConfig.isLastPipelineParallelRank())
{
auto const logitsType = engine.getTensorDataType("logits");
logits = manager.emptyTensor(MemoryType::kGPU, logitsType);
}
contextLengthsHost = manager.emptyTensor(MemoryType::kPINNED, nvinfer1::DataType::kINT32);
sequenceLengths = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
lastTokenIds = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
auto const localNbLayers = modelConfig.getNbLayers(worldConfig.getPipelineParallelism());
auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
nvinfer1::DataType kvDtype;
if (modelConfig.usePagedKvCache())
{
if (modelConfig.getQuantMode().hasFp8KvCache())
{
kvDtype = nvinfer1::DataType::kFP8;
}
else if (modelConfig.getQuantMode().hasInt8KvCache())
{
kvDtype = nvinfer1::DataType::kINT8;
}
else
{
kvDtype = modelConfig.getDataType();
}
}
else
{
kvDtype = modelConfig.getQuantMode().hasFp8KvCache()
? nvinfer1::DataType::kFP8
: engine.getTensorDataType(("present_key_value_" + std::to_string(firstLayerId)).c_str());
}
if (modelConfig.usePagedKvCache())
{
auto const kvCacheBlockPointersType
= engine.getTensorDataType(("kv_cache_block_pointers_" + std::to_string(firstLayerId)).c_str());
kvCacheBlockPointersHost = manager.emptyTensor(MemoryType::kCPU, kvCacheBlockPointersType);
kvCacheBlockPointersDevice = manager.emptyTensor(MemoryType::kGPU, kvCacheBlockPointersType);
}
else
{
presentKeysVals = utils::createBufferVector(runtime, localNbLayers, MemoryType::kGPU, kvDtype);
}
if (modelConfig.useGptAttentionPlugin())
{
pastKeyValueLengths = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
}
else
{
presentKeysValsAlt = utils::createBufferVector(runtime, localNbLayers, MemoryType::kGPU, kvDtype);
}
if (modelConfig.useGptAttentionPlugin())
{
requestTypes = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
}
cacheIndirectionDecoderInput = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
cacheIndirectionDecoderOutput = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
nbFinished = BufferManager::pinned(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
if (worldConfig.isPipelineParallel())
{
hiddenStates = manager.emptyTensor(MemoryType::kGPU, modelConfig.getDataType());
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::initContextLengths(TensorPtr const& inputLengths, BufferManager& manager)
{
contextLengthsDevice = inputLengths;
contextLengthsHost->reshape(inputLengths->getShape());
manager.copy(*contextLengthsDevice, *contextLengthsHost);
manager.getStream().synchronize(); // wait for context lengths to be copied to host
}
void RuntimeBuffers::reshape(
GenerationConfig const& generationConfig, GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
auto const maxInputLength = generationConfig.maxInputLength;
auto const maxSeqLength = generationConfig.maxSeqLength;
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
logits->reshape(ITensor::makeShape({batchSize, 1, vocabSizePadded}));
}
sequenceLengths->reshape(ITensor::makeShape({batchSize}));
lastTokenIds->reshape(ITensor::makeShape({batchSize}));
auto kvCacheShape
= ITensor::makeShape({batchSize, 2, modelConfig.getNbKvHeads(), maxSeqLength, modelConfig.getSizePerHead()});
if (modelConfig.usePagedKvCache())
{
auto const localNbLayers = modelConfig.getNbLayers(worldConfig.getPipelineParallelism());
auto const tokensPerBlock = modelConfig.getTokensPerBlock();
auto const maxBlocksPerSeq = (maxSeqLength + tokensPerBlock - 1) / tokensPerBlock;
// reserve batchSize * beamWidth and resize to batchSize
auto cacheBlockPointersShape = ITensor::makeShape({localNbLayers, batchSize * beamWidth, 2, maxBlocksPerSeq});
kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
cacheBlockPointersShape.d[1] = batchSize;
kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
}
else
{
utils::reshapeBufferVector(presentKeysVals, kvCacheShape);
}
if (modelConfig.useGptAttentionPlugin())
{
pastKeyValueLengths->reshape(ITensor::makeShape({batchSize}));
requestTypes->reshape(ITensor::makeShape({batchSize}));
}
else
{
utils::reshapeBufferVector(presentKeysValsAlt, kvCacheShape);
}
auto const cacheIndirShape = ITensor::makeShape({batchSize, beamWidth, maxSeqLength});
cacheIndirectionDecoderInput->reshape(cacheIndirShape);
cacheIndirectionDecoderOutput->reshape(cacheIndirShape);
if (worldConfig.isPipelineParallel())
{
// reserve max size
auto const maxNumTokens = std::max(batchSize * beamWidth, batchSize * maxInputLength);
auto const hiddenSize = modelConfig.getHiddenSize() * worldConfig.getTensorParallelism();
auto const hiddenStatesShape = ITensor::makeShape({1, maxNumTokens, hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
allocated = true;
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::gatherLastTokenLogits(BufferManager& manager, GenerationConfig const& generationConfig,
GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(modelConfig.computeContextLogits(),
"Gather last token logits is only necessary when context logits are computed");
if (worldConfig.isLastPipelineParallelRank())
{
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
auto const tiledTensorShape = ITensor::makeShape({batchSize, beamWidth, vocabSizePadded});
auto tiledTensor = std::shared_ptr(manager.gpu(tiledTensorShape, logits->getDataType()));
kernels::gatherLastTokenLogits(*tiledTensor, *logits, *lastTokenIds, manager.getStream());
manager.getStream().synchronize();
std::swap(logits, tiledTensor);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::tile(BufferManager& manager, GenerationConfig const& generationConfig,
GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const beamWidth = generationConfig.beamWidth;
TLLM_CHECK_WITH_INFO(beamWidth > 1, "Tiling is only necessary for beam search.");
// Note: If computeContextLogits is true, the copy/expansion is performed in gatherLastTokenLogits.
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
// logits needs beamWidth in second dimension
auto logitsShape = logits->getShape();
logitsShape.d[1] *= beamWidth;
utils::tileBufferReplace(logits, beamWidth, manager);
logits->reshape(logitsShape);
}
utils::tileBufferReplace(contextLengthsDevice, beamWidth, manager);
utils::tileBufferReplace(sequenceLengths, beamWidth, manager);
if (modelConfig.useGptAttentionPlugin())
{
utils::tileCpuBufferReplace(contextLengthsHost, beamWidth, manager);
utils::tileCpuBufferReplace(pastKeyValueLengths, beamWidth, manager);
}
else
{
utils::tileBufferReplace(attentionMask, beamWidth, manager);
}
if (!modelConfig.usePagedKvCache())
{
for (auto& buffer : presentKeysVals)
utils::tileBufferReplace(buffer, beamWidth, manager);
for (auto& buffer : presentKeysValsAlt)
utils::tileBufferReplace(buffer, beamWidth, manager);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::postContextStep(BufferManager& manager, GenerationConfig const& generationConfig,
GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
if (modelConfig.useGptAttentionPlugin())
{
requestTypes->reshape(ITensor::makeShape({batchSize * beamWidth}));
auto hostRequestTypes = bufferCast<int32_t>(*requestTypes);
std::fill_n(hostRequestTypes, requestTypes->getSize(), 1);
}
if (modelConfig.computeContextLogits())
{
gatherLastTokenLogits(manager, generationConfig, modelConfig, worldConfig);
}
if (beamWidth > 1)
{
tile(manager, generationConfig, modelConfig, worldConfig);
}
// no need to copy data in lastTokenIds because it is overwritten in prepareNextStep
lastTokenIds->reshape(ITensor::makeShape({batchSize * beamWidth}));
if (modelConfig.useGptAttentionPlugin() && modelConfig.usePagedKvCache())
{
auto cacheBlockPointersShape = kvCacheBlockPointersHost->getShape();
cacheBlockPointersShape.d[1] = batchSize * beamWidth;
kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::prepareContextStep(TensorPtr const& inputIds, TokenIdType const padId, BufferManager& manager,
KvCacheManager const* kvCacheManager, GenerationConfig const& generationConfig, GptModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto& stream = manager.getStream();
SizeType const batchSize = generationConfig.batchSize;
SizeType const maxInputLength = generationConfig.maxInputLength;
manager.copy(*contextLengthsDevice, *sequenceLengths);
if (modelConfig.useGptAttentionPlugin())
{
auto pastKeyValueLengthsPtr = bufferCast<SizeType>(*pastKeyValueLengths);
TLLM_CHECK(pastKeyValueLengths->getSize() == static_cast<std::size_t>(batchSize));
std::fill_n(pastKeyValueLengthsPtr, batchSize, 0);
if (modelConfig.useGptAttentionPlugin())
{
auto RequestTypesPtr = bufferCast<int32_t>(*requestTypes);
TLLM_CHECK(requestTypes->getSize() == static_cast<std::size_t>(batchSize));
std::fill_n(RequestTypesPtr, batchSize, 0);
}
auto const inputSize = inputIds->getSize();
auto const& inputShape = inputIds->getShape();
auto const contextLengthsHostPtr = bufferCast<SizeType const>(*contextLengthsHost);
std::vector<SizeType> positionIdsVec(inputSize);
auto begin = std::begin(positionIdsVec);
for (SizeType i = 0; i < batchSize; ++i)
{
auto end = begin + (modelConfig.usePackedInput() ? contextLengthsHostPtr[i] : maxInputLength);
std::iota(begin, end, 0);
begin = end;
}
positionIds = manager.copyFrom(positionIdsVec, inputShape, MemoryType::kGPU);
if (worldConfig.isPipelineParallel())
{
auto const hiddenSize = hiddenStates->getShape().d[2];
auto const hiddenStatesShape = ITensor::makeShape({inputShape.d[0], inputShape.d[1], hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
}
else
{
attentionMask = manager.copyFrom(*inputIds, MemoryType::kGPU);
kernels::invokeBuildAttentionMask(*attentionMask, padId, stream);
auto attentionMaskHost = manager.copyFrom(*attentionMask, MemoryType::kCPU);
auto const* attentionMaskData = reinterpret_cast<SizeType const*>(attentionMaskHost->data());
std::vector<SizeType> positionIdsVec(attentionMask->getSize());
for (SizeType i = 0; i < batchSize; ++i)
{
std::exclusive_scan(attentionMaskData + i * maxInputLength, attentionMaskData + (i + 1) * maxInputLength,
std::begin(positionIdsVec) + i * maxInputLength, 0);
}
for (std::size_t i = 0; i < positionIdsVec.size(); ++i)
if (attentionMaskData[i] == 0)
positionIdsVec[i] = 1;
positionIds = manager.copyFrom(positionIdsVec, attentionMask->getShape(), MemoryType::kGPU);
}
if (modelConfig.useGptAttentionPlugin() && modelConfig.usePagedKvCache())
{
auto constexpr contextBeamWidth = 1;
kvCacheManager->getBlockPointersOfBatch(kvCacheBlockPointersHost, batchSize, contextBeamWidth);
manager.copy(*kvCacheBlockPointersHost, *kvCacheBlockPointersDevice);
}
if (modelConfig.usePackedInput())
{
kernels::invokeInclusiveSum(*lastTokenIds, *contextLengthsDevice, manager, stream);
}
else
{
manager.copy(*contextLengthsDevice, *lastTokenIds);
}
manager.setZero(*cacheIndirectionDecoderInput);
manager.setZero(*cacheIndirectionDecoderOutput);
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
};
RuntimeBuffers::TensorPtr RuntimeBuffers::prepareNextStep(SizeType const step, TensorPtr const& outputIds,
BufferManager& manager, KvCacheManager* kvCacheManager, GenerationConfig const& generationConfig,
GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto& stream = manager.getStream();
SizeType const batchSize = generationConfig.batchSize;
SizeType const beamWidth = generationConfig.beamWidth;
nvinfer1::Dims inputShape;
if (modelConfig.usePackedInput())
{
// batch in last dim
inputShape = ITensor::makeShape({1, batchSize * beamWidth});
}
else
{
// batch in first dim
inputShape = ITensor::makeShape({batchSize * beamWidth, 1});
}
auto nextInputIds = outputIds ? ITensor::view(outputIds, inputShape) : TensorPtr{};
if (modelConfig.useGptAttentionPlugin())
{
auto const contextLengthsHostPtr = bufferCast<SizeType const>(*contextLengthsHost);
auto const pastKeyValueLengthsPtr = bufferCast<SizeType>(*pastKeyValueLengths);
SizeType const tensorBatchSize = pastKeyValueLengths->getSize();
SizeType const srcStride = (modelConfig.useGptAttentionPlugin() ? 1 : beamWidth);
TLLM_CHECK(static_cast<std::size_t>(tensorBatchSize * srcStride) == contextLengthsDevice->getSize());
for (SizeType i = 0; i < tensorBatchSize; ++i)
{
pastKeyValueLengthsPtr[i] = contextLengthsHostPtr[i * srcStride] + step;
}
positionIds->reshape(inputShape);
manager.copy(*contextLengthsDevice, *positionIds);
kernels::invokeAdd(*positionIds, step, stream);
if (worldConfig.isPipelineParallel())
{
auto const hiddenSize = hiddenStates->getShape().d[2];
auto const hiddenStatesShape = ITensor::makeShape({inputShape.d[0], inputShape.d[1], hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
}
else
{
auto const shape = attentionMask->getShape();
auto const nbInputs = shape.d[0];
auto const oldLength = shape.d[1];
auto const newLength = oldLength + 1;
auto const newShape = ITensor::makeShape({nbInputs, newLength});
TensorPtr newAttentionMask = manager.gpu(newShape, attentionMask->getDataType());
kernels::invokeExtendAttentionMask(*newAttentionMask, *attentionMask, stream);
attentionMask = newAttentionMask;
auto attentionMaskHost = manager.copyFrom(*attentionMask, MemoryType::kCPU);
auto const* attentionMaskPtr = bufferCast<SizeType>(*attentionMaskHost);
// TODO old positionIds could be recovered to avoid scan
std::vector<SizeType> positionIdsVec(attentionMask->getSize());
for (SizeType i = 0; i < nbInputs; ++i)
{
std::exclusive_scan(attentionMaskPtr + i * newLength, attentionMaskPtr + (i + 1) * newLength,
std::begin(positionIdsVec) + i * newLength, 0);
}
for (std::size_t i = 0; i < positionIdsVec.size(); ++i)
if (attentionMaskPtr[i] == 0)
positionIdsVec[i] = 1;
std::vector<SizeType> positionIdsEndVec(nbInputs);
for (SizeType i = 0; i < nbInputs; ++i)
positionIdsEndVec[i] = positionIdsVec[(i + 1) * newLength - 1];
positionIds = manager.copyFrom(positionIdsEndVec, ITensor::makeShape({nbInputs, 1}), MemoryType::kGPU);
}
if (modelConfig.usePagedKvCache())
{
for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx)
{
kvCacheManager->addToken(batchIdx);
}
kvCacheManager->getBlockPointersOfBatch(kvCacheBlockPointersHost, batchSize, beamWidth);
manager.copy(*kvCacheBlockPointersHost, *kvCacheBlockPointersDevice);
}
kernels::invokeFill(*lastTokenIds, 1, stream);
if (modelConfig.usePackedInput())
{
kernels::invokeInclusiveSum(*lastTokenIds, *lastTokenIds, manager, stream);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
return nextInputIds;
};
void RuntimeBuffers::getRuntimeBuffers(TensorMap& inputBuffers, TensorMap& outputBuffers, SizeType const step,
TensorPtr const& inputIds, GptModelConfig const& modelConfig, WorldConfig const& worldConfig) const
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
inputBuffers.clear();
outputBuffers.clear();
if (worldConfig.isLastPipelineParallelRank())
{
// feed a view to TensorRT runtime so reshaping does not change logits buffer
outputBuffers.insert_or_assign("logits", ITensor::view(logits));
}
else
{
outputBuffers.insert_or_assign("hidden_states_output", hiddenStates);
}
if (worldConfig.isFirstPipelineParallelRank())
{
inputBuffers.insert_or_assign("input_ids", inputIds);
}
else
{
inputBuffers.insert_or_assign("hidden_states_input", hiddenStates);
}
inputBuffers.insert_or_assign("context_lengths", contextLengthsDevice);
if (!modelConfig.computeContextLogits())
{
inputBuffers.insert_or_assign("last_token_ids", lastTokenIds);
}
inputBuffers.insert_or_assign("position_ids", positionIds);
auto const localNbLayers = modelConfig.getNbLayers(worldConfig.getPipelineParallelism());
auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
if (modelConfig.useGptAttentionPlugin())
{
inputBuffers.insert_or_assign("cache_indirection", cacheIndirectionDecoderOutput);
inputBuffers.insert_or_assign("host_past_key_value_lengths", pastKeyValueLengths);
inputBuffers.insert_or_assign("host_request_types", requestTypes);
inputBuffers.insert_or_assign("sequence_length", sequenceLengths);
if (modelConfig.usePackedInput())
{
inputBuffers.insert_or_assign("host_context_lengths", contextLengthsHost);
}
if (modelConfig.usePagedKvCache())
{
utils::insertTensorSlices(
inputBuffers, "kv_cache_block_pointers_", kvCacheBlockPointersDevice, firstLayerId);
}
else
{
utils::insertTensorVector(inputBuffers, "past_key_value_", presentKeysVals, firstLayerId);
utils::insertTensorVector(outputBuffers, "present_key_value_", presentKeysVals, firstLayerId);
}
}
else
{
inputBuffers.insert_or_assign("attention_mask", attentionMask);
inputBuffers.insert_or_assign("cache_indirection", cacheIndirectionDecoderOutput);
utils::insertTensorVector(
outputBuffers, "present_key_value_", (step % 2) ? presentKeysValsAlt : presentKeysVals, firstLayerId);
if (step == 0)
{
auto kvCacheShape = presentKeysValsAlt.at(0)->getShape();
kvCacheShape.d[3] = 0;
for (SizeType i = firstLayerId; i < firstLayerId + localNbLayers; ++i)
{
std::string name = "past_key_value_" + std::to_string(i);
TensorPtr tmp = ITensor::view(presentKeysValsAlt[i], kvCacheShape);
inputBuffers.insert_or_assign(name, std::move(tmp));
}
}
else
{
utils::insertTensorVector(
inputBuffers, "past_key_value_", (step % 2) ? presentKeysVals : presentKeysValsAlt, firstLayerId);
}
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}