TensorRT-LLMs/examples/llama/quantize.py
2023-10-10 23:22:17 -07:00

139 lines
4.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from examples/quantization/hf_ptq.py
"""
import argparse
import random
import numpy as np
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
from tensorrt_llm._utils import str_dtype_to_torch
from tensorrt_llm.logger import logger
from tensorrt_llm.models.quantized.ammo import quantize_and_export
def get_calib_dataloader(data="cnn_dailymail",
tokenizer=None,
batch_size=1,
calib_size=512,
block_size=512):
print("Loading calibration dataset")
if data == "pileval":
dataset = load_dataset(
"json",
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
split="train")
dataset = dataset["text"][:calib_size]
elif data == "cnn_dailymail":
dataset = load_dataset("cnn_dailymail", name="3.0.0", split="train")
dataset = dataset["article"][:calib_size]
else:
raise NotImplementedError
batch_encoded = tokenizer.batch_encode_plus(dataset,
return_tensors="pt",
padding=True,
max_length=block_size)
batch_encoded = batch_encoded["input_ids"]
batch_encoded = batch_encoded.cuda()
calib_dataloader = DataLoader(batch_encoded,
batch_size=batch_size,
shuffle=False)
return calib_dataloader
def get_tokenizer(ckpt_path, **kwargs):
logger.info(f"Loading tokenizer from {ckpt_path}")
tokenizer = AutoTokenizer.from_pretrained(ckpt_path,
padding_side="left",
**kwargs)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_model(ckpt_path, dtype="float16"):
logger.info(f"Loading model from {ckpt_path}")
torch_dtype = str_dtype_to_torch(dtype)
model = AutoModelForCausalLM.from_pretrained(
ckpt_path,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch_dtype,
)
model.eval()
model = model.to(memory_format=torch.channels_last)
return model
def get_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--model_dir",
type=str,
required=True,
help="Directory of a HF model checkpoint")
parser.add_argument("--dtype", help="Model data type.", default="float16")
parser.add_argument("--qformat",
type=str,
choices=['fp8', 'int8_sq'],
default='fp8',
help='Quantization format.')
parser.add_argument("--calib_size",
type=int,
default=512,
help="Number of samples for calibration.")
parser.add_argument("--export_path", default="exported_model")
parser.add_argument("--tp_size",
type=int,
default=1,
help='Tensor parallel size.')
parser.add_argument('--seed', type=int, default=None, help='Random seed')
args = parser.parse_args()
return args
def main():
if not torch.cuda.is_available():
raise EnvironmentError("GPU is required for inference.")
args = get_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
tokenizer = get_tokenizer(args.model_dir)
model = get_model(args.model_dir, args.dtype)
calib_dataloader = get_calib_dataloader(tokenizer=tokenizer,
calib_size=args.calib_size)
model = quantize_and_export(model,
qformat=args.qformat,
calib_dataloader=calib_dataloader,
export_path=args.export_path,
tensor_parallel_size=args.tp_size)
if __name__ == "__main__":
main()