mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
375 lines
15 KiB
Python
375 lines
15 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import Tensor, recv, send
|
|
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
|
|
Embedding, GatedMLP, MoeConfig, PositionEmbeddingType,
|
|
RmsNorm)
|
|
from ...lora_manager import LoraBuildConfig, use_lora
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ...plugin import init_all_reduce_helper
|
|
from ...quantization import W8A8_SQ_PLUGIN_LIST, QuantAlgo
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
PretrainedConfig, QuantConfig)
|
|
|
|
|
|
class LLaMADecoderLayer(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
dtype=config.dtype,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
bias=config.attn_bias,
|
|
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
|
|
rotary_embedding_base=config.rotary_base,
|
|
rotary_embedding_scaling=config.rotary_scaling,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
tp_rank=config.mapping.tp_rank,
|
|
quant_mode=config.quant_mode)
|
|
|
|
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
|
|
|
|
ClsMLP = GatedMLP
|
|
mlp_kwargs = {}
|
|
if config.moe_num_experts > 1:
|
|
ClsMLP = MOE
|
|
mlp_kwargs = {
|
|
"moe_config":
|
|
MoeConfig(
|
|
config.moe_num_experts,
|
|
config.moe_top_k,
|
|
config.moe_tp_mode,
|
|
config.moe_normalization_mode,
|
|
),
|
|
"tp_rank":
|
|
config.mapping.tp_rank,
|
|
}
|
|
|
|
self.mlp = ClsMLP(hidden_size=config.hidden_size,
|
|
ffn_hidden_size=mlp_hidden_size,
|
|
hidden_act=config.hidden_act,
|
|
dtype=config.dtype,
|
|
bias=config.mlp_bias,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
quant_mode=config.quant_mode,
|
|
**mlp_kwargs)
|
|
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
medusa_packed_mask=None, # For Medusa support
|
|
medusa_position_offsets=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
lora_layer_params=None):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
medusa_packed_mask=medusa_packed_mask, # For Medusa support
|
|
medusa_position_offsets=medusa_position_offsets,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
|
|
hidden_states = residual + attention_output
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_layernorm(hidden_states)
|
|
|
|
hidden_states = self.mlp(hidden_states,
|
|
lora_layer_params=lora_layer_params)
|
|
|
|
hidden_states = residual + hidden_states
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class LLaMAModel(Module):
|
|
|
|
def __init__(self, config: PretrainedConfig) -> None:
|
|
super().__init__()
|
|
init_all_reduce_helper()
|
|
|
|
self.mapping = config.mapping
|
|
if self.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
self.layers = DecoderLayerList(LLaMADecoderLayer, config)
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
|
|
eps=config.norm_epsilon,
|
|
dtype=config.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
medusa_position_offsets=None, # For Medusa support
|
|
medusa_packed_mask=None, # For Medusa support
|
|
kv_cache_params=None,
|
|
attention_params=None,
|
|
hidden_states=None,
|
|
prompt_embedding_table: Optional[Tensor] = None,
|
|
prompt_tasks: Optional[Tensor] = None,
|
|
prompt_vocab_size: Optional[Tensor] = None,
|
|
lora_params=None):
|
|
|
|
ptuning_args = [
|
|
prompt_embedding_table, prompt_tasks, prompt_vocab_size
|
|
] if prompt_embedding_table is not None else []
|
|
|
|
if self.mapping.is_first_pp_rank():
|
|
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
|
|
else:
|
|
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
|
|
|
|
hidden_states = self.layers.forward(
|
|
hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params,
|
|
lora_params=lora_params,
|
|
medusa_position_offsets=medusa_position_offsets,
|
|
medusa_packed_mask=medusa_packed_mask)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
if self.mapping.is_last_pp_rank():
|
|
hidden_states = self.ln_f(hidden_states)
|
|
else:
|
|
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class LLaMAForCausalLM(DecoderModelForCausalLM):
|
|
|
|
def __init__(self, config: PretrainedConfig):
|
|
self.check_config(config)
|
|
transformer = LLaMAModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=False,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
self.quant_mode = config.quant_mode
|
|
self.mapping = config.mapping
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
def check_config(self, config):
|
|
config.set_if_not_exist('mlp_bias', False)
|
|
config.set_if_not_exist('attn_bias', False)
|
|
config.set_if_not_exist('rotary_base', 10000.0)
|
|
config.set_if_not_exist('rotary_scaling', None)
|
|
config.set_if_not_exist('moe_num_experts', 0)
|
|
config.set_if_not_exist('moe_top_k', 0)
|
|
config.set_if_not_exist('moe_tp_mode',
|
|
MoeConfig.ParallelismMode.TENSOR_PARALLEL)
|
|
config.set_if_not_exist(
|
|
'moe_normalization_mode',
|
|
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_model_dir,
|
|
dtype='float16',
|
|
mapping: Optional[Mapping] = None,
|
|
**kwargs):
|
|
from . import convert
|
|
if mapping is None:
|
|
mapping = Mapping()
|
|
llama = convert.from_hugging_face(
|
|
cls,
|
|
hf_model_dir,
|
|
dtype,
|
|
mapping=mapping,
|
|
quantization=kwargs.get('quantization', QuantConfig()),
|
|
load_by_shard=kwargs.get('load_by_shard', False),
|
|
load_model_on_cpu=kwargs.get('load_model_on_cpu', False),
|
|
override_fields=kwargs.get('override_fields', {}),
|
|
skip_loading_weights=kwargs.get('skip_loading_weights', False),
|
|
preloaded_model=kwargs.get('preloaded_model', None))
|
|
return llama
|
|
|
|
def default_plugin_config(self, **kwargs):
|
|
plugin_config = super().default_plugin_config(**kwargs)
|
|
if self.quant_mode.is_int4_weight_only_per_group():
|
|
plugin_config.set_weight_only_groupwise_quant_matmul_plugin()
|
|
return plugin_config
|
|
|
|
@classmethod
|
|
def from_meta_ckpt(cls,
|
|
meta_ckpt_dir,
|
|
dtype,
|
|
mapping,
|
|
use_parallel_embedding: Optional[bool] = False,
|
|
embedding_sharding_dim: Optional[int] = 0):
|
|
meta_config = None
|
|
with open(Path(meta_ckpt_dir, "params.json")) as fp:
|
|
meta_config: dict = json.load(fp)
|
|
assert meta_config is not None
|
|
config = {}
|
|
n_embd = meta_config["dim"]
|
|
n_head = meta_config["n_heads"]
|
|
n_kv_head = meta_config.get("n_kv_heads", n_head)
|
|
if "hidden_dim" in meta_config:
|
|
inter_size = meta_config["hidden_dim"]
|
|
else:
|
|
multiple_of = meta_config.get("multiple_of", 1)
|
|
n_embd_ = int(4 * n_embd * 2 / 3)
|
|
ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
|
|
inter_size = multiple_of * (
|
|
(int(n_embd_ * ffn_dim_multiplier) + multiple_of - 1) //
|
|
multiple_of)
|
|
# meta checkpoint don't have vocab_size|hidden_act|rotary_base specified, use same default value as HF
|
|
config.update({
|
|
'architecture': "LlamaForCausalLM",
|
|
'dtype': dtype,
|
|
'logits_dtype': 'float32',
|
|
'num_hidden_layers': meta_config["n_layers"],
|
|
'num_attention_heads': n_head,
|
|
'hidden_size': n_embd,
|
|
'intermediate_size': inter_size,
|
|
'num_key_value_heads': n_kv_head,
|
|
'vocab_size': 32000,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'max_position_embeddings': 2048,
|
|
'hidden_act': 'silu',
|
|
'rotary_base': 10000.0,
|
|
'norm_epsilon': meta_config["norm_eps"],
|
|
'mapping': {
|
|
'world_size': mapping.tp_size * mapping.pp_size,
|
|
'tp_size': mapping.tp_size,
|
|
'pp_size': mapping.pp_size,
|
|
},
|
|
})
|
|
pretrained_config = PretrainedConfig.from_dict(config)
|
|
pretrained_config.use_parallel_embedding = use_parallel_embedding
|
|
pretrained_config.embedding_sharding_dim = embedding_sharding_dim
|
|
pretrained_config.set_rank(mapping.rank)
|
|
|
|
llama = cls(pretrained_config)
|
|
from .weight import load_from_meta_llama
|
|
weights = load_from_meta_llama(meta_ckpt_dir, mapping,
|
|
pretrained_config)
|
|
llama.load(weights)
|
|
return llama
|
|
|
|
@classmethod
|
|
def quantize(
|
|
cls,
|
|
hf_model_dir,
|
|
output_dir,
|
|
quant_config: QuantConfig,
|
|
*,
|
|
dtype='float16',
|
|
mapping: Optional[Mapping] = None,
|
|
calib_batches=512,
|
|
calib_batch_size=1,
|
|
random_seed=1234,
|
|
tokenizer_max_seq_length=2048,
|
|
**kwargs,
|
|
):
|
|
DEFAULT_AMMO_FLOW = [
|
|
QuantAlgo.W4A16_AWQ, QuantAlgo.FP8, QuantAlgo.W8A8_SQ_PER_CHANNEL,
|
|
QuantAlgo.W4A8_AWQ
|
|
]
|
|
use_ammo_quantization = quant_config.quant_algo in DEFAULT_AMMO_FLOW
|
|
if use_ammo_quantization:
|
|
super().quantize(hf_model_dir,
|
|
output_dir,
|
|
quant_config,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
calib_batches=calib_batches,
|
|
calib_batch_size=calib_batch_size,
|
|
random_seed=random_seed,
|
|
tokenizer_max_seq_length=tokenizer_max_seq_length)
|
|
else:
|
|
# non-ammo, the legacy TRT-LLM native quantization algorithm:
|
|
# sq, int4/int8 weights only, int8 kv cache
|
|
NATIVE_QUANT_FLOW = [QuantAlgo.W4A16, QuantAlgo.W8A16, None
|
|
] + W8A8_SQ_PLUGIN_LIST
|
|
is_valid_native_quant = (quant_config.quant_algo in NATIVE_QUANT_FLOW) and \
|
|
(quant_config.kv_cache_quant_algo in [QuantAlgo.INT8, None])
|
|
assert quant_config.quant_algo is not None or quant_config.kv_cache_quant_algo is not None, \
|
|
"There is no point to call the quantize function if both quant_algo and kv_cache_quant_algo is None"
|
|
assert is_valid_native_quant, f"Internal error: shall call AMMO for this quantization {quant_config}"
|
|
|
|
from . import convert
|
|
convert.quantize(
|
|
dtype,
|
|
hf_model_dir,
|
|
output_dir,
|
|
mapping,
|
|
quant_config,
|
|
override_fields=kwargs.get('override_fields', {}),
|
|
dataset_cache_dir=kwargs.get('dataset_cache_dir', None),
|
|
)
|
|
|
|
def use_lora(self, lora_config: LoraBuildConfig):
|
|
use_lora(self, lora_config)
|