TensorRT-LLMs/_modules/tensorrt_llm/layers/attention.html
2025-09-04 03:19:11 +00:00

3541 lines
490 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.layers.attention &#8212; TensorRT-LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../_static/custom.css?v=95073da6" />
<!-- So that users can add custom icons -->
<script src="../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/layers/attention';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.1.0rc3';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.1.0rc3" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../release-notes.html">Release Notes</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-llama4-scout-on-trtllm.html">Quick Start Recipe for Llama4 Scout 17B on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-deepseek-r1-on-trtllm.html">Quick Start Recipe for DeepSeek R1 on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-llama3.3-70b-on-trtllm.html">Quick Start Recipe for Llama3.3 70B on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-gpt-oss-on-trtllm.html">Quick Start Recipe for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../examples/customization.html">LLM Common Customizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/lora.html">Run gpt-2b + LoRA using Executor / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/kv-cache-management.html">KV Cache Management: Pools, Blocks, and Events</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/disaggregated-service.html">Disaggregated-Service (Prototype)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../performance/performance-tuning-guide/index.html">Performance Tuning Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/useful-build-time-flags.html">Useful Build-Time Flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/fp8-quantization.html">FP8 Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/useful-runtime-flags.html">Useful Runtime Options</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/dev-containers.html">Using Dev Containers</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT-LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT-LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRTLLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT-LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT-LLM</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.layers.attention</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.layers.attention</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tensorrt</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">trt</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._common</span><span class="w"> </span><span class="kn">import</span> <span class="n">default_net</span><span class="p">,</span> <span class="n">precision</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">fp32_array</span><span class="p">,</span> <span class="n">int32_array</span><span class="p">,</span> <span class="n">is_same_dtype</span><span class="p">,</span> <span class="n">set_obj_attrs</span><span class="p">,</span>
<span class="n">trt_dtype_to_np</span><span class="p">,</span> <span class="n">trt_dtype_to_str</span><span class="p">)</span>
<span class="c1"># isort: off</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..functional</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span>
<span class="n">ACT2FN</span><span class="p">,</span> <span class="n">AllReduceParams</span><span class="p">,</span> <span class="n">AttentionMaskType</span><span class="p">,</span> <span class="n">Conditional</span><span class="p">,</span> <span class="n">LayerNormType</span><span class="p">,</span>
<span class="n">PositionEmbeddingType</span><span class="p">,</span> <span class="n">RopeEmbeddingUtils</span><span class="p">,</span> <span class="n">RotaryScalingType</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">allgather</span><span class="p">,</span> <span class="n">arange</span><span class="p">,</span> <span class="n">bert_attention</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">clip</span><span class="p">,</span> <span class="n">concat</span><span class="p">,</span> <span class="n">constant</span><span class="p">,</span> <span class="n">embedding</span><span class="p">,</span>
<span class="n">expand</span><span class="p">,</span> <span class="n">expand_dims</span><span class="p">,</span> <span class="n">expand_mask</span><span class="p">,</span> <span class="n">generate_alibi_biases</span><span class="p">,</span> <span class="n">identity</span><span class="p">,</span>
<span class="n">generate_alibi_slopes</span><span class="p">,</span> <span class="n">generate_logn_scaling</span><span class="p">,</span> <span class="n">gpt_attention</span><span class="p">,</span> <span class="n">matmul</span><span class="p">,</span>
<span class="n">minimum</span><span class="p">,</span> <span class="n">repeat_interleave</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="nb">slice</span><span class="p">,</span> <span class="n">softmax</span><span class="p">,</span> <span class="n">split</span><span class="p">,</span> <span class="n">unsqueeze</span><span class="p">,</span> <span class="n">where</span><span class="p">)</span>
<span class="c1"># isort: on</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..module</span><span class="w"> </span><span class="kn">import</span> <span class="n">Module</span><span class="p">,</span> <span class="n">ModuleList</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..parameter</span><span class="w"> </span><span class="kn">import</span> <span class="n">Parameter</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantMode</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization.functional</span><span class="w"> </span><span class="kn">import</span> <span class="n">dequantize</span><span class="p">,</span> <span class="n">quantize</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.linear</span><span class="w"> </span><span class="kn">import</span> <span class="n">ColumnLinear</span><span class="p">,</span> <span class="n">RowLinear</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.lora</span><span class="w"> </span><span class="kn">import</span> <span class="n">LoraRuntimeParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.normalization</span><span class="w"> </span><span class="kn">import</span> <span class="n">GroupNorm</span><span class="p">,</span> <span class="n">LayerNorm</span><span class="p">,</span> <span class="n">RmsNorm</span>
<span class="n">layernorm_map</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">LayerNormType</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">:</span> <span class="n">LayerNorm</span><span class="p">,</span>
<span class="n">LayerNormType</span><span class="o">.</span><span class="n">RmsNorm</span><span class="p">:</span> <span class="n">RmsNorm</span><span class="p">,</span>
<span class="n">LayerNormType</span><span class="o">.</span><span class="n">GroupNorm</span><span class="p">:</span> <span class="n">GroupNorm</span><span class="p">,</span>
<span class="p">}</span>
<div class="viewcode-block" id="make_causal_mask">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.make_causal_mask">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">make_causal_mask</span><span class="p">(</span><span class="n">bsz</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="n">past_key_values_length</span><span class="p">,</span> <span class="n">dtype</span><span class="p">):</span>
<span class="n">_range</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">constant</span><span class="p">(</span><span class="n">int32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">)),</span>
<span class="n">end</span><span class="o">=</span><span class="n">tgt_len</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_str</span><span class="p">(</span><span class="n">dtype</span><span class="p">))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">repeat_interleave</span><span class="p">(</span><span class="n">_range</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">tgt_len</span><span class="p">,</span>
<span class="n">tgt_len</span><span class="p">]))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">mask</span> <span class="o">&lt;</span> <span class="n">mask</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">),</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">)</span>
<span class="n">zero</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">fp32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="n">zero</span> <span class="o">=</span> <span class="n">expand_dims</span><span class="p">(</span><span class="n">zero</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">zero</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">zero</span><span class="p">,</span> <span class="n">concat</span><span class="p">([</span><span class="n">tgt_len</span><span class="p">,</span> <span class="n">past_key_values_length</span><span class="p">]))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">zero</span><span class="p">,</span> <span class="n">mask</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">*=</span> <span class="n">np</span><span class="o">.</span><span class="n">finfo</span><span class="p">(</span><span class="n">trt_dtype_to_np</span><span class="p">(</span><span class="n">dtype</span><span class="p">))</span><span class="o">.</span><span class="n">min</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="n">tgt_len</span> <span class="o">+</span> <span class="n">past_key_values_length</span><span class="p">]))</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span>
<span class="n">concat</span><span class="p">([</span><span class="n">bsz</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">tgt_len</span><span class="p">,</span> <span class="n">tgt_len</span> <span class="o">+</span> <span class="n">past_key_values_length</span><span class="p">]))</span>
<span class="k">return</span> <span class="n">mask</span></div>
<div class="viewcode-block" id="compute_relative_bias">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.compute_relative_bias">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">compute_relative_bias</span><span class="p">(</span><span class="n">query_length</span><span class="p">,</span>
<span class="n">key_length</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="p">,</span>
<span class="n">max_distance</span><span class="p">,</span>
<span class="n">bidirectional</span><span class="p">,</span>
<span class="n">rel_attn_table</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">make_relative_position_bucket</span><span class="p">(</span><span class="n">relative_position</span><span class="p">,</span> <span class="n">bidirectional</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="p">,</span> <span class="n">max_distance</span><span class="p">):</span>
<span class="n">relative_buckets</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">if</span> <span class="n">bidirectional</span><span class="p">:</span>
<span class="n">num_buckets</span> <span class="o">//=</span> <span class="mi">2</span>
<span class="n">relative_buckets</span> <span class="o">+=</span> <span class="n">where</span><span class="p">(</span><span class="n">relative_position</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">,</span> <span class="n">num_buckets</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">relative_position</span> <span class="o">=</span> <span class="n">relative_position</span><span class="o">.</span><span class="n">abs</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">relative_position</span> <span class="o">=</span> <span class="mi">0</span> <span class="o">-</span> <span class="n">minimum</span><span class="p">(</span><span class="n">relative_position</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">max_exact</span> <span class="o">=</span> <span class="n">num_buckets</span> <span class="o">//</span> <span class="mi">2</span>
<span class="n">is_small</span> <span class="o">=</span> <span class="n">relative_position</span> <span class="o">&lt;</span> <span class="n">max_exact</span>
<span class="n">max_exact_fp</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">fp32_array</span><span class="p">(</span><span class="n">max_exact</span><span class="p">))</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">relative_position</span><span class="p">,</span> <span class="s2">&quot;float32&quot;</span><span class="p">)</span> <span class="o">/</span> <span class="n">max_exact_fp</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">log</span><span class="p">()</span>
<span class="n">const1</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">max_distance</span> <span class="o">/</span> <span class="n">max_exact</span><span class="p">)</span>
<span class="n">const2</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">fp32_array</span><span class="p">(</span><span class="n">num_buckets</span> <span class="o">-</span> <span class="n">max_exact</span><span class="p">))</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">tmp</span> <span class="o">/</span> <span class="n">const1</span> <span class="o">*</span> <span class="n">const2</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">relative_position_if_large</span><span class="p">,</span> <span class="s2">&quot;int32&quot;</span><span class="p">)</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">max_exact</span> <span class="o">+</span> <span class="n">relative_position_if_large</span>
<span class="n">relative_position_if_large</span> <span class="o">=</span> <span class="n">minimum</span><span class="p">(</span><span class="n">relative_position_if_large</span><span class="p">,</span>
<span class="n">num_buckets</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">relative_buckets</span> <span class="o">+=</span> <span class="n">where</span><span class="p">(</span><span class="n">is_small</span><span class="p">,</span> <span class="n">relative_position</span><span class="p">,</span>
<span class="n">relative_position_if_large</span><span class="p">)</span>
<span class="k">return</span> <span class="n">relative_buckets</span>
<span class="n">context_position</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">constant</span><span class="p">(</span><span class="n">int32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">)),</span>
<span class="n">end</span><span class="o">=</span><span class="n">query_length</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_str</span><span class="p">(</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">))</span>
<span class="n">context_position</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">context_position</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">memory_position</span> <span class="o">=</span> <span class="n">arange</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">constant</span><span class="p">(</span><span class="n">int32_array</span><span class="p">(</span><span class="mi">0</span><span class="p">)),</span>
<span class="n">end</span><span class="o">=</span><span class="n">key_length</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_str</span><span class="p">(</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">))</span>
<span class="n">memory_position</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">memory_position</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">relative_position</span> <span class="o">=</span> <span class="n">memory_position</span> <span class="o">-</span> <span class="n">context_position</span>
<span class="n">relative_position_bucket</span> <span class="o">=</span> <span class="n">make_relative_position_bucket</span><span class="p">(</span>
<span class="n">relative_position</span><span class="p">,</span> <span class="c1"># shape (query_length, key_length)</span>
<span class="n">bidirectional</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="p">,</span>
<span class="n">max_distance</span><span class="p">,</span>
<span class="p">)</span>
<span class="c1"># shape (query_length, key_length, num_heads)</span>
<span class="n">values</span> <span class="o">=</span> <span class="n">embedding</span><span class="p">(</span><span class="n">relative_position_bucket</span><span class="p">,</span>
<span class="n">rel_attn_table</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="c1"># shape (1, num_heads, query_length, key_length)</span>
<span class="n">values</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">values</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
<span class="k">return</span> <span class="n">values</span></div>
<div class="viewcode-block" id="AttentionMaskParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionMaskParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">AttentionMaskParams</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">self_attention_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">self_attention_packed_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_packed_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">self_attention_mask</span> <span class="o">=</span> <span class="n">self_attention_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">self_attention_packed_mask</span> <span class="o">=</span> <span class="n">self_attention_packed_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_mask</span> <span class="o">=</span> <span class="n">cross_attention_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_packed_mask</span> <span class="o">=</span> <span class="n">cross_attention_packed_mask</span></div>
<div class="viewcode-block" id="AttentionParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">AttentionParams</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_max_input_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sequence_length</span> <span class="o">=</span> <span class="n">sequence_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">context_lengths</span> <span class="o">=</span> <span class="n">context_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_context_lengths</span> <span class="o">=</span> <span class="n">host_context_lengths</span>
<span class="c1"># max allowed context length. Required to</span>
<span class="c1"># compute scratch memory size.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_context_length</span> <span class="o">=</span> <span class="n">max_context_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_request_types</span> <span class="o">=</span> <span class="n">host_request_types</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder_input_lengths</span> <span class="o">=</span> <span class="n">encoder_input_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder_max_input_length</span> <span class="o">=</span> <span class="n">encoder_max_input_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_runtime_perf_knobs</span> <span class="o">=</span> <span class="n">host_runtime_perf_knobs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_context_progress</span> <span class="o">=</span> <span class="n">host_context_progress</span>
<span class="c1"># const parameters that will be reused by all layers.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># auxiliary params to support models with non-homegeneous attn layers requiring</span>
<span class="c1"># a different set of rope params. e.g. Gemma3.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_local</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq_local</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention_local</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># long rope const parameters</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_rotary_inv_freq</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<div class="viewcode-block" id="AttentionParams.fill_attention_const_params_for_rope">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.fill_attention_const_params_for_rope">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_attention_const_params_for_rope</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">embed_positions</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_inv_freq</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">embed_positions_for_gpt_attention</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">embed_positions_local</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_inv_freq_local</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">embed_positions_for_gpt_attention_local</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions</span> <span class="o">=</span> <span class="n">embed_positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="n">rotary_inv_freq</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">embed_positions_for_gpt_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_local</span> <span class="o">=</span> <span class="n">embed_positions_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq_local</span> <span class="o">=</span> <span class="n">rotary_inv_freq_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention_local</span> <span class="o">=</span> <span class="n">embed_positions_for_gpt_attention_local</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="AttentionParams.fill_attention_const_params_for_long_rope">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.fill_attention_const_params_for_long_rope">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_attention_const_params_for_long_rope</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">embed_positions</span><span class="p">,</span> <span class="n">long_rope_embed_positions</span><span class="p">,</span> <span class="n">rotary_inv_freq</span><span class="p">,</span>
<span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="p">,</span> <span class="n">short_mscale</span><span class="p">,</span>
<span class="n">long_mscale</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions</span> <span class="o">=</span> <span class="n">embed_positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions</span> <span class="o">=</span> <span class="n">long_rope_embed_positions</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="n">rotary_inv_freq</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_rotary_inv_freq</span> <span class="o">=</span> <span class="n">long_rope_rotary_inv_freq</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">embed_positions_for_gpt_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_rope_embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">long_rope_embed_positions_for_gpt_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="n">short_mscale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="n">long_mscale</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="AttentionParams.is_valid_cross_attn">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.is_valid_cross_attn">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_valid_cross_attn</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">do_cross_attention</span><span class="p">):</span>
<span class="k">if</span> <span class="n">do_cross_attention</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder_input_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">encoder_max_input_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span></div>
<div class="viewcode-block" id="AttentionParams.is_valid">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.AttentionParams.is_valid">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_valid</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">gpt_attention_plugin</span><span class="p">,</span> <span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">use_kv_cache</span><span class="p">):</span>
<span class="k">if</span> <span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="n">use_kv_cache</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">sequence_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_request_types</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_context_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_runtime_perf_knobs</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_context_progress</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_context_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span></div>
</div>
<div class="viewcode-block" id="SpecDecodingParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.SpecDecodingParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">SpecDecodingParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_max_generation_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_is_generation_length_variable</span> <span class="o">=</span> <span class="n">spec_decoding_is_generation_length_variable</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_max_generation_length</span> <span class="o">=</span> <span class="n">spec_decoding_max_generation_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_generation_lengths</span> <span class="o">=</span> <span class="n">spec_decoding_generation_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_position_offsets</span> <span class="o">=</span> <span class="n">spec_decoding_position_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_packed_mask</span> <span class="o">=</span> <span class="n">spec_decoding_packed_mask</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spec_decoding_use</span> <span class="o">=</span> <span class="n">spec_decoding_use</span></div>
<div class="viewcode-block" id="MropeParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.MropeParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">MropeParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_position_deltas</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mrope_rotary_cos_sin</span> <span class="o">=</span> <span class="n">mrope_rotary_cos_sin</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mrope_position_deltas</span> <span class="o">=</span> <span class="n">mrope_position_deltas</span></div>
<div class="viewcode-block" id="KeyValueCacheParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">KeyValueCacheParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">past_key_value_length</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_cross_kv_cache_block_offsets</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_cross_kv_cache_pool_pointers</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">host_cross_kv_cache_pool_mapping</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="o">=</span> <span class="n">past_key_value</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_past_key_value_lengths</span> <span class="o">=</span> <span class="n">host_past_key_value_lengths</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_max_attention_window_sizes</span> <span class="o">=</span> <span class="n">host_max_attention_window_sizes</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_sink_token_length</span> <span class="o">=</span> <span class="n">host_sink_token_length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">host_kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_kv_cache_pool_pointers</span> <span class="o">=</span> <span class="n">host_kv_cache_pool_pointers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_kv_cache_pool_mapping</span> <span class="o">=</span> <span class="n">host_kv_cache_pool_mapping</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">cross_kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_cross_kv_cache_block_offsets</span> <span class="o">=</span> <span class="n">host_cross_kv_cache_block_offsets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_pointers</span> <span class="o">=</span> <span class="n">host_cross_kv_cache_pool_pointers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_mapping</span> <span class="o">=</span> <span class="n">host_cross_kv_cache_pool_mapping</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cache_indirection</span> <span class="o">=</span> <span class="n">cache_indirection</span>
<span class="c1"># self.past_key_value_length = past_key_value_length</span>
<div class="viewcode-block" id="KeyValueCacheParams.get_first_past_key_value">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams.get_first_past_key_value">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_first_past_key_value</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span></div>
<div class="viewcode-block" id="KeyValueCacheParams.fill_none_tensor_list">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams.fill_none_tensor_list">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_none_tensor_list</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">list_size</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">past_key_value</span> <span class="o">=</span> <span class="nb">tuple</span><span class="p">([</span><span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="n">list_size</span><span class="p">)</span></div>
<div class="viewcode-block" id="KeyValueCacheParams.is_valid">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.KeyValueCacheParams.is_valid">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">is_valid</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">gpt_attention_plugin</span><span class="p">):</span>
<span class="k">if</span> <span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_past_key_value_lengths</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_max_attention_window_sizes</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">host_sink_token_length</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cache_indirection</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span></div>
</div>
<div class="viewcode-block" id="BlockSparseAttnParams">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.BlockSparseAttnParams">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">BlockSparseAttnParams</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">block_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">,</span>
<span class="n">homo_head_pattern</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">num_local_blocks</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span><span class="p">,</span>
<span class="n">vertical_stride</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">block_size</span> <span class="o">=</span> <span class="n">block_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">homo_head_pattern</span> <span class="o">=</span> <span class="n">homo_head_pattern</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_local_blocks</span> <span class="o">=</span> <span class="n">num_local_blocks</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vertical_stride</span> <span class="o">=</span> <span class="n">vertical_stride</span></div>
<div class="viewcode-block" id="Attention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">Attention</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">apply_query_key_layer_scaling</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">attention_head_size</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">qk_layernorm</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">layernorm_type</span><span class="o">=</span><span class="n">LayerNormType</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">,</span>
<span class="n">layernorm_share</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">inner_layernorm</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-05</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">padding</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="mf">10000.0</span><span class="p">,</span>
<span class="n">rotary_embedding_base_local</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_embedding_percentage</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">rope_scaling_short_factors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rope_scaling_long_factors</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rope_scaling_short_mscale</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rope_scaling_long_mscale</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">original_max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="p">:</span> <span class="n">QuantMode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">cross_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">dense_bias</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">clip_qkv</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">alibi_bias_max</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
<span class="n">skip_cross_kv</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_attn_value</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="n">block_sparse_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">use_implicit_relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">reorder</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">enable_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">cp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">max_seqlen_for_logn_scaling</span><span class="o">=</span><span class="mi">8192</span><span class="p">,</span>
<span class="n">use_logn_scaling</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_local</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span> <span class="o">=</span> <span class="n">local_layer_idx</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="o">=</span> <span class="n">cross_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="o">=</span> <span class="n">attention_mask_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span> <span class="k">if</span> <span class="n">attention_head_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attention_head_size</span>
<span class="k">assert</span> <span class="n">num_attention_heads</span> <span class="o">%</span> <span class="n">tp_size</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> \
<span class="s2">&quot;num_attention_heads must be divisible by tp_size&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">num_attention_heads</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">num_kv_heads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span>
<span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span> <span class="k">if</span> <span class="n">num_kv_heads</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_kv_heads</span> <span class="o">=</span> <span class="n">num_kv_heads</span> <span class="k">if</span> <span class="n">num_kv_heads</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">original_max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span> <span class="o">=</span> <span class="n">dense_bias</span>
<span class="k">if</span> <span class="n">dense_bias</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="o">=</span> <span class="n">cp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">=</span> <span class="n">cp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span> <span class="o">=</span> <span class="n">cp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="o">=</span> <span class="n">is_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span> <span class="o">=</span> <span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span> <span class="o">=</span> <span class="n">apply_query_key_layer_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="n">q_scaling</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="c1"># Whether to scale ALiBi bias. Mathematically, it&#39;s equivalent to</span>
<span class="c1"># normalizing QK after adding bias.</span>
<span class="c1"># - False, inv_sqrt_Dh * Q*K^T + alibi_bias</span>
<span class="c1"># - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale_alibi_bias</span> <span class="o">=</span> <span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">alibi_with_scale</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alibi_bias_max</span> <span class="o">=</span> <span class="n">alibi_bias_max</span>
<span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">position_embedding_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="o">=</span> <span class="n">relative_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span> <span class="o">=</span> <span class="n">max_distance</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span> <span class="o">=</span> <span class="n">num_buckets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base</span> <span class="o">=</span> <span class="n">rotary_embedding_base</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base_local</span> <span class="o">=</span> <span class="n">rotary_embedding_base_local</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scaling</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_percentage</span> <span class="o">=</span> <span class="n">rotary_embedding_percentage</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_implicit_relative_attention</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="ow">and</span> <span class="n">use_implicit_relative_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_seqlen_for_logn_scaling</span> <span class="o">=</span> <span class="n">max_seqlen_for_logn_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_logn_scaling</span> <span class="o">=</span> <span class="n">use_logn_scaling</span>
<span class="k">if</span> <span class="n">rotary_embedding_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">rotary_scaling_type</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;type&quot;</span><span class="p">,</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;rope_type&quot;</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">from_string</span><span class="p">(</span>
<span class="n">rotary_scaling_type</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;factor&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span>
<span class="n">rotary_embedding_percentage</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">alibi_scale</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_alibi_bias</span> <span class="k">else</span> <span class="mf">1.</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="n">generate_alibi_slopes</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">alibi_scale</span><span class="o">=</span><span class="n">alibi_scale</span><span class="p">,</span>
<span class="n">alibi_bias_max</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">alibi_bias_max</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;alibi_slopes&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">alibi_slopes</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_logn_scaling</span><span class="p">:</span>
<span class="n">logn_scaling</span> <span class="o">=</span> <span class="n">generate_logn_scaling</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_seqlen_for_logn_scaling</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;logn_scaling&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">logn_scaling</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span> <span class="o">=</span> <span class="n">quant_mode</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span> <span class="o">=</span> <span class="n">max_attn_value</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">&#39;kv_cache_scaling_factor&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">&#39;attention_output_orig_quant_scale&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span><span class="s1">&#39;attention_output_sf_scale&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span> <span class="o">=</span> <span class="n">block_sparse_params</span> <span class="k">if</span> <span class="n">block_sparse_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">BlockSparseAttnParams</span><span class="p">(</span>
<span class="p">)</span>
<span class="c1"># The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads,</span>
<span class="c1"># d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size.</span>
<span class="c1"># In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp,</span>
<span class="c1"># which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting</span>
<span class="c1"># out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size</span>
<span class="c1"># example: d_model != num_heads * head_size in Flan-T5/ByT5/Gemma</span>
<span class="k">if</span> <span class="n">enable_qkv</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">+</span>
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<span class="c1"># see optimize_model&#39;s add_lora for LoRA initialization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># per-layer relative attention table</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_implicit_relative_attention</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">num_attention_heads</span> <span class="o">//</span>
<span class="n">tp_size</span><span class="p">,</span> <span class="n">num_buckets</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># qk layernorm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span> <span class="o">=</span> <span class="n">qk_layernorm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layernorm_type</span> <span class="o">=</span> <span class="n">layernorm_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layernorm_share</span> <span class="o">=</span> <span class="n">layernorm_share</span>
<span class="n">ln_type</span> <span class="o">=</span> <span class="n">layernorm_map</span><span class="p">[</span><span class="n">layernorm_type</span><span class="p">]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="c1"># layernorm_share indicates whether all the QK head in one layer shares the same norm parameters or not</span>
<span class="k">if</span> <span class="n">layernorm_share</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">ln_type</span> <span class="o">==</span> <span class="n">LayerNorm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_layernorm</span> <span class="o">=</span> <span class="n">ln_type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">)</span> <span class="k">if</span> <span class="n">inner_layernorm</span> <span class="k">else</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">clip_qkv</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span> <span class="o">=</span> <span class="n">fp32_array</span><span class="p">([</span><span class="n">clip_qkv</span><span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">skip_cross_kv</span> <span class="o">=</span> <span class="n">skip_cross_kv</span>
<div class="viewcode-block" id="Attention.create_attention_const_params">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.create_attention_const_params">[docs]</a>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">create_attention_const_params</span><span class="p">(</span><span class="n">model_cls</span><span class="p">,</span> <span class="n">config</span><span class="p">):</span>
<span class="c1"># get rotary parameters.</span>
<span class="n">hidden_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span>
<span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">head_size</span>
<span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span>
<span class="n">position_embedding_type</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">position_embedding_type</span>
<span class="n">rotary_embedding_base</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_base&#39;</span><span class="p">,</span> <span class="mf">10000.0</span><span class="p">)</span>
<span class="n">rotary_embedding_scaling</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_scaling&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">rotary_embedding_percentage</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_pct&#39;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="c1"># only rope need the const parameters.</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">return</span>
<span class="c1"># attention head size</span>
<span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span> <span class="k">if</span> <span class="n">attention_head_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attention_head_size</span>
<span class="c1"># rotary embedding dim.</span>
<span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">config</span><span class="p">,</span> <span class="s1">&#39;rotary_dim&#39;</span><span class="p">,</span>
<span class="nb">int</span><span class="p">(</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="n">rotary_embedding_percentage</span><span class="p">))</span>
<span class="c1"># rotary scaling.</span>
<span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="k">if</span> <span class="n">rotary_embedding_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">rotary_scaling_type</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;type&quot;</span><span class="p">,</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;rope_type&quot;</span><span class="p">))</span>
<span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">from_string</span><span class="p">(</span>
<span class="n">rotary_scaling_type</span><span class="p">)</span>
<span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;factor&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="k">if</span> <span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="n">rope_scaling_short_factors</span><span class="p">,</span> <span class="n">rope_scaling_long_factors</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">rope_scaling_short_mscale</span><span class="p">,</span> <span class="n">rope_scaling_long_mscale</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span> <span class="s2">&quot;longrope_scaling_short_factors&quot;</span><span class="p">):</span>
<span class="n">rope_scaling_short_factors</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span>
<span class="n">config</span><span class="o">.</span><span class="n">longrope_scaling_short_factors</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">rope_scaling_long_factors</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">asarray</span><span class="p">(</span>
<span class="n">config</span><span class="o">.</span><span class="n">longrope_scaling_long_factors</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">original_max_position_embeddings</span>
<span class="k">if</span> <span class="n">config</span><span class="o">.</span><span class="n">architecture</span> <span class="o">==</span> <span class="s2">&quot;Phi3SmallForCausalLM&quot;</span> <span class="ow">or</span> <span class="n">config</span><span class="o">.</span><span class="n">architecture</span> <span class="o">==</span> <span class="s2">&quot;PhiMoEForCausalLM&quot;</span><span class="p">:</span>
<span class="n">rope_scaling_short_mscale</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">longrope_short_mscale</span>
<span class="n">rope_scaling_long_mscale</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">longrope_long_mscale</span>
<span class="n">embed_positions</span><span class="p">,</span> <span class="n">long_rope_embed_positions</span><span class="p">,</span> \
<span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span><span class="p">),</span> \
<span class="p">(</span><span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span> <span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="p">),</span> <span class="n">mscale</span> \
<span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_long_rope_for_attention_plugin</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">original_max_position_embeddings</span><span class="p">,</span> <span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="p">,</span> <span class="n">rope_scaling_short_factors</span><span class="p">,</span>
<span class="n">rope_scaling_long_factors</span><span class="p">,</span> <span class="n">rope_scaling_short_mscale</span><span class="p">,</span> <span class="n">rope_scaling_long_mscale</span><span class="p">)</span>
<span class="k">if</span> <span class="n">rope_scaling_short_mscale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">rope_scaling_long_mscale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">short_mscale</span> <span class="o">=</span> <span class="n">rope_scaling_short_mscale</span>
<span class="n">long_mscale</span> <span class="o">=</span> <span class="n">rope_scaling_long_mscale</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">short_mscale</span> <span class="o">=</span> <span class="n">long_mscale</span> <span class="o">=</span> <span class="n">mscale</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;long_rope_embed_positions&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">long_rope_embed_positions</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;long_rope_rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;long_rope_embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">short_mscale</span> <span class="o">=</span> <span class="n">short_mscale</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_mscale</span> <span class="o">=</span> <span class="n">long_mscale</span>
<span class="k">elif</span> <span class="n">rotary_embedding_scale_type</span> <span class="o">==</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">yarn</span><span class="p">:</span>
<span class="n">beta_fast</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;beta_fast&quot;</span><span class="p">,</span> <span class="mf">32.0</span><span class="p">)</span>
<span class="n">beta_slow</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;beta_slow&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="n">mscale</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mscale&quot;</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)</span>
<span class="n">mscale_all_dim</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mscale_all_dim&quot;</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">)</span>
<span class="n">original_max_position_embeddings</span> <span class="o">=</span> <span class="n">rotary_embedding_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s2">&quot;original_max_position_embeddings&quot;</span><span class="p">,</span> <span class="mi">4096</span><span class="p">)</span>
<span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_yarn</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span> <span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="p">,</span> <span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">original_max_position_embeddings</span><span class="p">,</span> <span class="n">beta_fast</span><span class="p">,</span> <span class="n">beta_slow</span><span class="p">,</span> <span class="n">mscale</span><span class="p">,</span>
<span class="n">mscale_all_dim</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="nf">register_rope_params</span><span class="p">(</span><span class="n">rotary_base</span><span class="p">,</span> <span class="n">names_to_register</span><span class="p">):</span>
<span class="c1"># Rotary const weights.</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_for_attention_plugin</span><span class="p">(</span>
<span class="n">max_position_embeddings</span><span class="p">,</span> <span class="n">rotary_embedding_dim</span><span class="p">,</span> <span class="n">rotary_base</span><span class="p">,</span>
<span class="n">rotary_embedding_scale</span><span class="p">,</span> <span class="n">rotary_embedding_scale_type</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="p">)</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="n">names_to_register</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="n">names_to_register</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">rotary_inv_freq</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span> <span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="n">names_to_register</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">,</span>
<span class="n">is_buffer</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">register_rope_params</span><span class="p">(</span><span class="n">rotary_base</span><span class="o">=</span><span class="n">rotary_embedding_base</span><span class="p">,</span>
<span class="n">names_to_register</span><span class="o">=</span><span class="p">[</span>
<span class="s1">&#39;embed_positions&#39;</span><span class="p">,</span> <span class="s1">&#39;rotary_inv_freq&#39;</span><span class="p">,</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span>
<span class="p">])</span>
<span class="c1"># For models with non-homegeneous attention layers requiring a second set of rope params. e.g. Gemma3.</span>
<span class="n">rotary_embedding_base_local</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">config</span><span class="p">,</span>
<span class="s1">&#39;rope_local_base_freq&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">rotary_embedding_base_local</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">register_rope_params</span><span class="p">(</span>
<span class="n">rotary_base</span><span class="o">=</span><span class="n">rotary_embedding_base_local</span><span class="p">,</span>
<span class="n">names_to_register</span><span class="o">=</span><span class="p">[</span>
<span class="s1">&#39;embed_positions_local&#39;</span><span class="p">,</span> <span class="s1">&#39;rotary_inv_freq_local&#39;</span><span class="p">,</span>
<span class="s1">&#39;embed_positions_for_gpt_attention_local&#39;</span>
<span class="p">])</span></div>
<div class="viewcode-block" id="Attention.fill_attention_params">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.fill_attention_params">[docs]</a>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">fill_attention_params</span><span class="p">(</span><span class="n">model_cls</span><span class="p">,</span> <span class="n">attention_params</span><span class="p">):</span>
<span class="k">if</span> <span class="n">model_cls</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">if</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attention_params</span> <span class="o">=</span> <span class="n">AttentionParams</span><span class="p">()</span>
<span class="k">if</span> <span class="n">model_cls</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="k">return</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">fill_attention_const_params_for_long_rope</span><span class="p">(</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_rope_embed_positions</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">rotary_inv_freq</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_rope_rotary_inv_freq</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">long_rope_embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">short_mscale</span><span class="p">,</span> <span class="n">model_cls</span><span class="o">.</span><span class="n">long_mscale</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">fill_attention_const_params_for_rope</span><span class="p">(</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">rotary_inv_freq</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_local</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model_cls</span><span class="p">,</span> <span class="s2">&quot;embed_positions_local&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">rotary_inv_freq_local</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model_cls</span><span class="p">,</span> <span class="s2">&quot;rotary_inv_freq_local&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">model_cls</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention_local</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">model_cls</span><span class="p">,</span>
<span class="s2">&quot;embed_positions_for_gpt_attention_local&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># Fill nothing.</span>
<span class="k">return</span> <span class="n">attention_params</span></div>
<span class="k">def</span><span class="w"> </span><span class="nf">_get_output_orig_quant_scale</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">attention_output_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_orig_quant_scale</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_orig_quant_scale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">attention_output_orig_quant_scale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gemm_plugin</span> <span class="o">==</span> <span class="s1">&#39;nvfp4&#39;</span>
<span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_nvfp4</span><span class="p">()):</span>
<span class="c1"># The scale was intended for nvfp4 quantization: max_value * scale = fp4_max * fp8_max</span>
<span class="c1"># So if we want to quantize the output to fp8, the scale should be divided by fp4_max</span>
<span class="n">attention_output_orig_quant_scale</span> <span class="o">=</span> <span class="n">attention_output_orig_quant_scale</span> <span class="o">/</span> <span class="mf">6.0</span>
<span class="k">return</span> <span class="n">attention_output_orig_quant_scale</span>
<div class="viewcode-block" id="Attention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_packed_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_output</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">norm_before_bmm1</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">lora_layer_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_cache_gen</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_reuse</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">all_reduce_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">AllReduceParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">skip_attn</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="n">attention_input</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="p">(</span><span class="n">Tensor</span><span class="p">,</span> <span class="nb">tuple</span><span class="p">))</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="n">SpecDecodingParams</span><span class="p">(</span>
<span class="p">)</span> <span class="k">if</span> <span class="n">spec_decoding_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">spec_decoding_params</span>
<span class="n">mrope_params</span> <span class="o">=</span> <span class="n">MropeParams</span><span class="p">()</span> <span class="k">if</span> <span class="n">mrope_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">mrope_params</span>
<span class="n">logn_scaling</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_logn_scaling</span><span class="p">:</span>
<span class="n">logn_scaling</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">logn_scaling</span><span class="o">.</span><span class="n">value</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alibi_slopes</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="n">alibi_slopes</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">alibi_slopes</span><span class="p">,</span> <span class="n">hidden_states</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_qkv&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_qkv&quot;</span><span class="p">)</span>
<span class="n">unfuse_qkv_gemm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">unfuse_qkv_gemm</span><span class="p">:</span>
<span class="n">qkv_gemm</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">v</span><span class="p">]</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="p">[</span><span class="n">gemm</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span> <span class="k">for</span> <span class="n">gemm</span> <span class="ow">in</span> <span class="n">qkv_gemm</span><span class="p">]</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="o">.</span><span class="n">lora</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">kv_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">lora</span><span class="p">,</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="p">[</span><span class="n">tensor</span> <span class="o">+</span> <span class="n">lora</span> <span class="k">for</span> <span class="n">tensor</span><span class="p">,</span> <span class="n">lora</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="n">qkv_lora</span><span class="p">)]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">clip</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">clip_qkv</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">if</span> <span class="n">unfuse_qkv_gemm</span><span class="p">:</span>
<span class="k">for</span> <span class="n">tensor</span> <span class="ow">in</span> <span class="n">qkv</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">tensor</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">q_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_q&quot;</span><span class="p">)</span>
<span class="n">k_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_k&quot;</span><span class="p">)</span>
<span class="n">v_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_v&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">q_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_q&quot;</span><span class="p">)</span>
<span class="n">k_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_k&quot;</span><span class="p">)</span>
<span class="n">v_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;cross_attn_v&quot;</span><span class="p">)</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">or</span> \
<span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">),</span> <span class="s2">&quot;q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time.&quot;</span>
<span class="k">if</span> <span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv_lora_runtime_params</span> <span class="o">=</span> <span class="n">LoraRuntimeParams</span><span class="p">(</span>
<span class="n">lora_ranks</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">lora_weights_pointers</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">max_encoder_context_length</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span>
<span class="n">max_encoder_context_length</span><span class="p">,</span>
<span class="n">host_encoder_input_lengths</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span>
<span class="n">host_encoder_input_lengths</span><span class="p">,</span>
<span class="n">partial_lora_mask</span><span class="o">=</span><span class="n">lora_layer_params</span><span class="o">.</span><span class="n">partial_lora_mask</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">qkv_lora_runtime_params</span><span class="p">)</span>
<span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">q_lora</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span> <span class="o">+</span> <span class="n">qkv_lora</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="n">qkv_lora_runtime_params</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="n">base_shape</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="n">qkv_sections</span> <span class="o">=</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="p">]</span>
<span class="n">total_heads</span> <span class="o">=</span> <span class="nb">sum</span><span class="p">(</span><span class="n">qkv_sections</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">base_shape</span><span class="p">,</span> <span class="n">total_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">]))</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="n">qkv_sections</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">q_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">q_shape</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">q_shape</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">q_shape</span><span class="p">)</span>
<span class="n">normalized_shape</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">layernorm_share</span><span class="p">:</span>
<span class="n">normalized_shape</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="n">query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">q_layernorm</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="o">=</span><span class="n">normalized_shape</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="o">=</span><span class="n">normalized_shape</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="n">query</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">base_shape</span><span class="p">,</span> <span class="n">total_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">]))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">chatglm</span><span class="p">:</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb_chatglm</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span>
<span class="n">position_embedding</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="n">paged_kv_cache</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="k">assert</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span> <span class="n">use_cache</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">get_first_past_key_value</span><span class="p">(</span>
<span class="p">)</span>
<span class="c1"># if cross attention, cross QKV only needs to be calculated once in the</span>
<span class="c1"># 1st decoding step --&gt; write to cross KV cache --&gt; remains constant</span>
<span class="c1"># during the entire decoding steps.</span>
<span class="c1"># 1st and &gt;1st steps are distinguished by a boolean tensor `cross_kv_cache_gen` passed at runtime</span>
<span class="c1"># also, cross KV cache max length is set from encoder output seqlen,</span>
<span class="c1"># this maps to the max context length concept in decoder-only models</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="n">encoder_output</span><span class="p">:</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">compute_cross_kv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">&#39;kv&#39;</span><span class="p">):</span>
<span class="c1"># We optimize the graph by adding kv in the cross attention layer, preventing computing the</span>
<span class="c1"># query of encoder_output.</span>
<span class="k">assert</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;Not support LoRA when we only compute key/value in cross atteniton&quot;</span>
<span class="c1"># see optimization_model&#39;s optimize_cross_qkv</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">base_shape</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span>
<span class="n">cross_kv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">cross_kv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">cross_kv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_kv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="n">key</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cross_qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">base_shape</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span>
<span class="n">cross_qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="k">if</span> <span class="n">cross_qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span> <span class="k">else</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
<span class="n">cross_qkv</span> <span class="o">=</span> <span class="n">cross_qkv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">+</span>
<span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_layernorm</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">k_layernorm</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="n">key</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">cross_kv</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_qkv</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span> <span class="mi">2</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">cross_kv</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">base_shape</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">]))</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">cross_k_lora</span><span class="p">,</span> <span class="n">cross_v_lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span><span class="p">(</span>
<span class="n">encoder_output</span><span class="p">,</span>
<span class="n">qkv_lora_runtime_params</span><span class="p">,</span>
<span class="n">is_cross_attention</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">cross_kv_lora</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">cross_k_lora</span><span class="p">,</span> <span class="n">cross_v_lora</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">cross_k_lora</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">cross_kv</span> <span class="o">+</span> <span class="n">cross_kv_lora</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_dora</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span>
<span class="n">qkv_lora_runtime_params</span><span class="p">,</span>
<span class="n">is_cross_attention</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">return</span> <span class="n">cross_kv</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">skip_cross_kv</span><span class="p">:</span>
<span class="n">conditional</span> <span class="o">=</span> <span class="n">Conditional</span><span class="p">(</span><span class="n">cross_kv_cache_gen</span><span class="p">)</span>
<span class="n">cond_in1</span> <span class="o">=</span> <span class="n">conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">)</span>
<span class="n">cond_in2</span> <span class="o">=</span> <span class="n">conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">cross_kv_reuse</span><span class="p">)</span>
<span class="c1">## True branch: context phase, compute cross qkv</span>
<span class="n">cross_kv_true</span> <span class="o">=</span> <span class="n">compute_cross_kv</span><span class="p">(</span><span class="n">cond_in1</span><span class="p">)</span>
<span class="c1">## False branch: generation phase, no compute but need to obey shape constraints</span>
<span class="c1"># because TRT&#39;s IfConditional requires the output shape of two subgraphs to be identical</span>
<span class="c1"># our 1st attempt was to stack encoder_output [B, S, H] or [N, H] --&gt; cross qkv [B, S, 3*H] or [N, 3*H],</span>
<span class="c1"># but it still introduces unnecessary concat. A better solution is to create a dummy torch tensor `cross_kv_resue`</span>
<span class="c1"># with the correct shape and reuse it in every generation step</span>
<span class="n">cross_kv_false</span> <span class="o">=</span> <span class="n">cond_in2</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">conditional</span><span class="o">.</span><span class="n">add_output</span><span class="p">(</span><span class="n">cross_kv_true</span><span class="p">,</span> <span class="n">cross_kv_false</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cross_kv</span> <span class="o">=</span> <span class="n">compute_cross_kv</span><span class="p">(</span><span class="n">encoder_output</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="p">(</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectionalglm</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">blocksparse</span>
<span class="p">],</span> <span class="s1">&#39;Plugin only support masked MHA.&#39;</span>
<span class="c1"># KV cache scales.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_rcp_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># The output SF scale, needed when fuse_fp4_quant is enabled.</span>
<span class="n">attention_output_sf_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_sf_scale</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_output_sf_scale</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="kc">None</span>
<span class="c1"># The rotary inv freq can be pre-computed.</span>
<span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span> <span class="s2">&quot;rotary_inv_freq&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="c1"># Rotary cos/sin cache.</span>
<span class="n">rotary_cos_sin</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span>
<span class="s2">&quot;embed_positions_for_gpt_attention&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">rotary_inv_freq_local</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span>
<span class="s2">&quot;rotary_inv_freq_local&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">rotary_cos_sin_local</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">attention_params</span><span class="p">,</span> <span class="s2">&quot;embed_positions_for_gpt_attention_local&quot;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="n">long_rope_rotary_inv_freq</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">attention_params</span><span class="p">,</span>
<span class="s2">&quot;long_rope_rotary_inv_freq&quot;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="n">long_rope_rotary_cos_sin</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span>
<span class="n">attention_params</span><span class="p">,</span> <span class="s2">&quot;long_rope_embed_positions_for_gpt_attention&quot;</span><span class="p">,</span>
<span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">:</span>
<span class="n">rotary_inv_freq</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">rotary_cos_sin</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># check if the cache is provided.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">rotary_inv_freq</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span>
<span class="n">rotary_cos_sin</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="p">),</span> <span class="s2">&quot;rotary_inv_freq and embed_positions_for_gpt_attention must be provided.&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">long_rope_rotary_inv_freq</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">assert</span> <span class="n">long_rope_rotary_cos_sin</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span> <span class="o">=</span> <span class="n">gpt_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="o">=</span><span class="n">qkv</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">past_key_value</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">attention_packed_mask</span><span class="o">=</span><span class="n">attention_packed_mask</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">num_kv_heads_origin</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">hidden_size_per_head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">rotary_embedding_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base_local</span><span class="p">,</span>
<span class="n">rotary_embedding_scale_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span><span class="p">,</span>
<span class="n">rotary_embedding_short_m_scale</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">short_mscale</span><span class="p">,</span>
<span class="n">rotary_embedding_long_m_scale</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">long_mscale</span><span class="p">,</span>
<span class="n">rotary_embedding_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">rotary_embedding_max_positions</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">rotary_embedding_original_max_positions</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">original_max_position_embeddings</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_inv_freq</span><span class="o">=</span><span class="n">rotary_inv_freq</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="k">else</span> <span class="n">rotary_inv_freq_local</span><span class="p">,</span>
<span class="n">rotary_cos_sin</span><span class="o">=</span><span class="n">rotary_cos_sin</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_local</span> <span class="k">else</span> <span class="n">rotary_cos_sin_local</span><span class="p">,</span>
<span class="n">kv_orig_quant_scale</span><span class="o">=</span><span class="n">kv_orig_quant_scale</span><span class="p">,</span>
<span class="n">kv_quant_orig_scale</span><span class="o">=</span><span class="n">kv_quant_orig_scale</span><span class="p">,</span>
<span class="n">attention_output_orig_quant_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">_get_output_orig_quant_scale</span><span class="p">(),</span>
<span class="n">attention_output_sf_scale</span><span class="o">=</span><span class="n">attention_output_sf_scale</span><span class="p">,</span>
<span class="n">kv_cache_quant_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">max_context_length</span><span class="p">,</span>
<span class="n">mask_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">block_sparse_block_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span><span class="n">block_size</span><span class="p">,</span>
<span class="n">block_sparse_homo_head_pattern</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">homo_head_pattern</span><span class="p">,</span>
<span class="n">block_sparse_num_local_blocks</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">num_local_blocks</span><span class="p">,</span>
<span class="n">block_sparse_vertical_stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">vertical_stride</span><span class="p">,</span>
<span class="n">alibi_slopes</span><span class="o">=</span><span class="n">alibi_slopes</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">do_cross_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">cross_kv</span><span class="o">=</span><span class="n">cross_kv</span><span class="p">,</span>
<span class="n">cross_kv_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_input_lengths</span><span class="p">,</span>
<span class="n">logn_scaling</span><span class="o">=</span><span class="n">logn_scaling</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="o">=</span><span class="n">spec_decoding_params</span>
<span class="o">.</span><span class="n">spec_decoding_is_generation_length_variable</span><span class="p">,</span>
<span class="n">spec_decoding_max_generation_length</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_max_generation_length</span><span class="p">,</span>
<span class="n">spec_decoding_generation_lengths</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_packed_mask</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span><span class="n">spec_decoding_use</span><span class="p">,</span>
<span class="n">long_rope_rotary_inv_freq</span><span class="o">=</span><span class="n">long_rope_rotary_inv_freq</span><span class="p">,</span>
<span class="n">long_rope_rotary_cos_sin</span><span class="o">=</span><span class="n">long_rope_rotary_cos_sin</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin</span><span class="o">=</span><span class="n">mrope_params</span><span class="o">.</span><span class="n">mrope_rotary_cos_sin</span><span class="p">,</span>
<span class="n">mrope_position_deltas</span><span class="o">=</span><span class="n">mrope_params</span><span class="o">.</span><span class="n">mrope_position_deltas</span><span class="p">,</span>
<span class="n">attn_logit_softcapping_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_progress</span><span class="p">,</span>
<span class="n">skip_attn</span><span class="o">=</span><span class="n">skip_attn</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># plain TensorRT mode</span>
<span class="k">assert</span> <span class="n">paged_kv_cache</span> <span class="o">==</span> <span class="kc">False</span>
<span class="k">assert</span> <span class="n">logn_scaling</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s2">&quot;plan TensorRT mode does not support logn scaling now&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transpose_for_scores</span><span class="p">(</span><span class="n">x</span><span class="p">,</span>
<span class="n">rotary</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">is_kv</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">):</span>
<span class="n">_num_attention_heads</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="k">if</span> <span class="n">is_kv</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="n">new_x_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">_num_attention_heads</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="k">if</span> <span class="n">rotary</span><span class="p">:</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="c1"># qkv after projection is of shape</span>
<span class="c1"># [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size].</span>
<span class="c1"># The projected and split qkv after transpose_for_scores():</span>
<span class="c1"># Q[bs, num_attention_heads, seqlen, attention_head_size]</span>
<span class="c1"># K[bs, num_attention_kv_heads, seqlen, attention_head_size]</span>
<span class="c1"># V[bs, num_attention_kv_heads, seqlen, attention_head_size]</span>
<span class="n">kv_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="k">if</span> <span class="n">unfuse_qkv_gemm</span><span class="p">:</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">qkv</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">qkv</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">qkv</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="c1"># in cross attention mode, replace kv by encoder_output</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="n">encoder_output</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">cross_kv</span><span class="p">,</span> <span class="p">[</span><span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span>
<span class="n">query</span><span class="p">,</span> <span class="n">rotary</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">())</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span>
<span class="n">key</span><span class="p">,</span> <span class="n">is_kv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">rotary</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">())</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="n">is_kv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_rope</span><span class="p">():</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="n">sequence_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">floor_seq_length</span> <span class="o">=</span> <span class="n">maximum</span><span class="p">(</span>
<span class="n">sequence_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">)</span>
<span class="n">starts</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">shapes</span> <span class="o">=</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="n">floor_seq_length</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">])</span>
<span class="n">short</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">starts</span><span class="p">,</span>
<span class="n">shapes</span><span class="p">)</span>
<span class="n">long</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">long_rope_embed_positions</span><span class="p">,</span>
<span class="n">starts</span><span class="p">,</span> <span class="n">shapes</span><span class="p">)</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">short</span><span class="p">,</span> <span class="n">long</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">select</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span>
<span class="n">sequence_length</span>
<span class="o">&lt;=</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span>
<span class="n">concat</span><span class="p">([</span><span class="n">select</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">shape</span><span class="p">(</span><span class="n">short</span><span class="p">))</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">is_same_dtype</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">trt</span><span class="o">.</span><span class="n">bfloat16</span><span class="p">):</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">embed_positions</span><span class="p">,</span>
<span class="n">trt</span><span class="o">.</span><span class="n">bfloat16</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">embed_positions</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_params</span><span class="o">.</span><span class="n">embed_positions</span><span class="p">,</span>
<span class="n">query</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># When shape(hidden_states, 1) &gt; 1(Context phase), the embedding start from 0,</span>
<span class="c1"># otherwise (Generation phase) move start to position</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="c1"># Only context phase is involved when kv cache is disabled.</span>
<span class="n">start</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span>
<span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key_value</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span>
<span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">sincos</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">embed_positions</span><span class="p">,</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span>
<span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">]))</span>
<span class="n">sin</span><span class="p">,</span> <span class="n">cos</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">sincos</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
<span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">key_rot_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span>
<span class="p">])</span>
<span class="n">query_rot_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span>
<span class="p">])</span>
<span class="n">remaining</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span>
<span class="n">key_pass_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">remaining</span>
<span class="p">])</span>
<span class="n">query_pass_size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">remaining</span>
<span class="p">])</span>
<span class="n">k_rot</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">key_rot_size</span><span class="p">)</span>
<span class="n">k_pass</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">],</span>
<span class="n">key_pass_size</span><span class="p">)</span>
<span class="n">q_rot</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">query_rot_size</span><span class="p">)</span>
<span class="n">q_pass</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span><span class="p">],</span>
<span class="n">query_pass_size</span><span class="p">)</span>
<span class="n">k_rot</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">k_rot</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">q_rot</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">q_rot</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">k_rot</span><span class="p">,</span> <span class="n">k_pass</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">q_rot</span><span class="p">,</span> <span class="n">q_pass</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">key</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb</span><span class="p">(</span>
<span class="n">query</span><span class="p">,</span> <span class="p">[</span><span class="n">cos</span><span class="p">,</span> <span class="n">sin</span><span class="p">],</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">dequantize</span><span class="p">(</span>
<span class="n">past_key_value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">output_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># past_key_value [bs, 2, num_heads, max_seq_len, head_dim]</span>
<span class="n">past_key</span><span class="p">,</span> <span class="n">past_value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">past_key_value</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">key_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">past_key</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">past_key</span> <span class="o">=</span> <span class="n">past_key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_shape</span><span class="p">,</span> <span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">past_value</span> <span class="o">=</span> <span class="n">past_value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_shape</span><span class="p">,</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">past_key</span><span class="p">,</span> <span class="n">key</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">past_value</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="n">key_inflated_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">inflated_key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_inflated_shape</span><span class="p">,</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">inflated_value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">key_inflated_shape</span><span class="p">,</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">inflated_key</span><span class="p">,</span> <span class="n">inflated_value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># TRT quantizes the tensor value by doing `cast(clip(fp_value / scale))` while</span>
<span class="c1"># the plugin quantizes it by doing `cast(clip(fp_value * scale))`.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">quantize</span><span class="p">(</span>
<span class="n">past_key_value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;fp8&#39;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_fp8_kv_cache</span><span class="p">()</span> <span class="k">else</span> <span class="s1">&#39;int8&#39;</span><span class="p">)</span>
<span class="c1"># MQA broadcast</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">repeat_interleave</span><span class="p">(</span>
<span class="n">key</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">repeat_interleave</span><span class="p">(</span>
<span class="n">value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">key_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="c1"># The following code creates a 2D tensor with 0s in the lower triangular (including the diagonal) and</span>
<span class="c1"># +INF in the upper triangular parts. This bias tensor will be added to the output of the Q*K^T matrix</span>
<span class="c1"># multiplication (BMM1). The +INF elements will be transformed to 0s by the Softmax operator that</span>
<span class="c1"># follows. The elements that corresponds to 0s in the bias are unaffected by the bias tensor.</span>
<span class="c1">#</span>
<span class="c1"># Note that when we added to another bias tensor B (for example, with AliBi), the values in the lower-</span>
<span class="c1"># triangular part of the B tensor are not affected and the upper-triangular ones are set to +INF.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="o">==</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="c1"># bsz, tatget_length, past_key_value_length</span>
<span class="n">buffer</span> <span class="o">=</span> <span class="n">make_causal_mask</span><span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">query_length</span><span class="p">,</span>
<span class="n">key_length</span> <span class="o">-</span> <span class="n">query_length</span><span class="p">,</span>
<span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">starts</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">sizes</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_length</span><span class="p">,</span> <span class="n">key_length</span><span class="p">])</span>
<span class="n">generated_mask</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">buffer</span><span class="p">,</span> <span class="n">starts</span><span class="p">,</span> <span class="n">sizes</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">starts</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">key_length</span> <span class="o">-</span> <span class="n">query_length</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">sizes</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_length</span><span class="p">,</span> <span class="n">key_length</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span> <span class="o">==</span> <span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">long_rope</span><span class="p">:</span>
<span class="n">buf_shape</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max_position_embeddings</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">buf_shape</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span>
<span class="n">select_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">tril</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">buf_shape</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">bool</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">select_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">logical_not</span><span class="p">(</span><span class="n">select_buf</span><span class="p">)</span>
<span class="n">mask_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">select_buf</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">mask_buf</span><span class="p">[</span><span class="n">select_buf</span><span class="p">]</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;-inf&#39;</span><span class="p">)</span>
<span class="n">buffer</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">mask_buf</span><span class="p">)</span>
<span class="n">generated_mask</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">buffer</span><span class="p">,</span> <span class="n">starts</span><span class="p">,</span> <span class="n">sizes</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="o">==</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">zero_buf</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">zero_buf</span><span class="p">[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">zero_buf</span> <span class="o">*=</span> <span class="o">-</span><span class="mi">10000</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">zero_buf</span><span class="p">)</span>
<span class="c1"># context phase, query_length</span>
<span class="n">mask_size</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">query_length</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_length</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">mask_start</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">query_length</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">-</span> <span class="n">mask_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">mask_start</span><span class="p">,</span> <span class="n">mask_start</span><span class="p">])</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">mask_size</span><span class="p">,</span> <span class="n">mask_size</span><span class="p">])</span>
<span class="n">generated_mask</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>
<span class="k">if</span> <span class="n">attention_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">query_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">encoder_input_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">attention_mask</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">query_len</span><span class="p">,</span> <span class="n">encoder_input_len</span><span class="p">]))</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">attention_mask</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="nb">float</span><span class="p">(</span><span class="s1">&#39;-inf&#39;</span><span class="p">),</span>
<span class="mf">0.0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">expand_mask</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">attention_mask</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="o">.</span><span class="n">is_alibi</span><span class="p">():</span>
<span class="n">alibi_biases</span> <span class="o">=</span> <span class="n">generate_alibi_biases</span><span class="p">(</span><span class="n">alibi_slopes</span><span class="p">,</span> <span class="n">key_length</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">alibi_biases</span> <span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">bias</span> <span class="o">+</span> <span class="n">alibi_biases</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">:</span>
<span class="n">query_length</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_implicit_relative_attention</span><span class="p">:</span>
<span class="n">relative_bias</span> <span class="o">=</span> <span class="n">compute_relative_bias</span><span class="p">(</span>
<span class="n">query_length</span> <span class="o">+</span> <span class="n">key_length</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">key_length</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="kc">False</span><span class="p">,</span> <span class="c1"># bidirectional</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">relative_bias</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">start</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">query_length</span> <span class="o">+</span> <span class="n">key_length</span> <span class="o">-</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">relative_bias</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">relative_bias</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">1</span><span class="p">,</span> <span class="n">key_length</span>
<span class="p">])</span>
<span class="n">relative_bias</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">relative_bias</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="n">model_type</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">dtype</span>
<span class="k">with</span> <span class="n">precision</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">):</span>
<span class="c1"># FIXME the &quot;with precision(&#39;float32&#39;) does not really work and lead to nan&quot;</span>
<span class="c1"># in some cases</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">norm_before_bmm1</span><span class="p">:</span>
<span class="c1"># Apply norm on query earlier to prevent matmul fp16 overflow.</span>
<span class="n">query</span> <span class="o">/=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">norm_before_bmm1</span><span class="p">:</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span> <span class="o">*</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="s1">&#39;tanh&#39;</span><span class="p">](</span>
<span class="n">attention_scores</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span>
<span class="p">]</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">:</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">generated_mask</span> <span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">bias</span> <span class="o">+</span> <span class="n">generated_mask</span>
<span class="k">if</span> <span class="n">bias</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">bias</span><span class="p">,</span> <span class="n">attention_scores</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">bias</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">:</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">relative_bias</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">model_type</span><span class="p">)</span>
<span class="c1"># A dummy reshape WAR for mha fusion</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">attention_probs</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="p">]))</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span>
<span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">context</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span>
<span class="p">]))</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_dense&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">skip_attn</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">use_fp8_context_fmha</span><span class="p">:</span>
<span class="c1"># This case is used when we can skip this attention layer directly.</span>
<span class="c1"># The output would be undefined and not used if skip_attn is not None</span>
<span class="c1"># and set skip_attn as True during runtime</span>
<span class="c1"># But when use_fp8_context_fmha is enabled, the output data type of</span>
<span class="c1"># attention_plugin is fp8. Since TRT&#39;s conditional layer does not support</span>
<span class="c1"># FP8 data type yet, we cannot use it to skip the computation in such case.</span>
<span class="n">dense_conditional</span> <span class="o">=</span> <span class="n">Conditional</span><span class="p">(</span><span class="n">skip_attn</span><span class="p">)</span>
<span class="n">skip_case</span> <span class="o">=</span> <span class="n">dense_conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">attention_input</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">dense_conditional</span><span class="o">.</span><span class="n">add_input</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">inner_layernorm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">inner_layernorm</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">,</span>
<span class="n">lora_runtime_params</span><span class="o">=</span><span class="n">dense_lora_params</span><span class="p">,</span>
<span class="n">all_reduce_params</span><span class="o">=</span><span class="n">all_reduce_params</span><span class="p">)</span>
<span class="k">if</span> <span class="n">skip_attn</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">use_fp8_context_fmha</span><span class="p">:</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">dense_conditional</span><span class="o">.</span><span class="n">add_output</span><span class="p">(</span><span class="n">skip_case</span><span class="p">,</span> <span class="n">context</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">context</span></div>
<div class="viewcode-block" id="Attention.set_rel_attn_table">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.set_rel_attn_table">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">set_rel_attn_table</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">max_seq_len</span><span class="p">,</span> <span class="n">precomputed_relative_attention</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_seq_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">max_seq_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">precomputed_relative_attention</span></div>
<div class="viewcode-block" id="Attention.postprocess">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.Attention.postprocess">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">postprocess</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">if</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s2">&quot;kv_cache_scaling_factor&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="n">weights</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="kc">None</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="nb">max</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s2">&quot;kv_cache_rcp_scaling_factor&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="n">weights</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">reciprocal</span><span class="p">(</span><span class="n">weights</span><span class="o">.</span><span class="n">float</span><span class="p">())}</span>
<span class="k">elif</span> <span class="kc">None</span> <span class="ow">in</span> <span class="n">weights</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">reciprocal</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">())}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="p">}</span></div>
</div>
<div class="viewcode-block" id="BertAttention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.BertAttention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">BertAttention</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">attention_head_size</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="n">apply_query_key_layer_scaling</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">num_buckets</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">)):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">=</span> <span class="n">hidden_size</span> <span class="o">//</span> <span class="n">num_attention_heads</span> <span class="k">if</span> <span class="n">attention_head_size</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">attention_head_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">=</span> <span class="n">num_attention_heads</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">num_kv_heads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span>
<span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span> <span class="k">if</span> <span class="n">num_kv_heads</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="o">=</span> <span class="n">cp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">=</span> <span class="n">cp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span> <span class="o">=</span> <span class="n">cp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span> <span class="o">=</span> <span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span> <span class="o">=</span> <span class="n">apply_query_key_layer_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="n">q_scaling</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_query_key_layer_scaling</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*=</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="c1"># add quant mode to control quantization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span> <span class="o">=</span> <span class="n">quant_mode</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="o">=</span> <span class="n">relative_attention</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span> <span class="o">=</span> <span class="n">max_distance</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span> <span class="o">=</span> <span class="n">num_buckets</span>
<span class="c1"># out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size</span>
<span class="c1"># example: d_model != num_heads * head_size in Flan-T5</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span> <span class="o">+</span>
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<span class="c1"># see optimize_model&#39;s add_lora for LoRA initialization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span> <span class="o">=</span> <span class="kc">None</span>
<span class="c1"># per-layer relative attention table</span>
<span class="k">if</span> <span class="n">relative_attention</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">num_attention_heads</span> <span class="o">//</span>
<span class="n">tp_size</span><span class="p">,</span> <span class="n">num_buckets</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="BertAttention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.BertAttention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">lora_layer_params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">)</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_qkv&quot;</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">qkv</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span> <span class="ow">and</span> <span class="n">qkv_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">q_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_q&quot;</span><span class="p">)</span>
<span class="n">k_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_k&quot;</span><span class="p">)</span>
<span class="n">v_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_v&quot;</span><span class="p">)</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">or</span> \
<span class="p">(</span><span class="n">q_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">),</span> <span class="s2">&quot;q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time.&quot;</span>
<span class="k">if</span> <span class="n">q_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">k_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">v_lora_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">qkv_lora_params</span> <span class="o">=</span> <span class="n">LoraRuntimeParams</span><span class="p">(</span>
<span class="n">lora_ranks</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_ranks</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">lora_weights_pointers</span><span class="o">=</span><span class="p">[</span>
<span class="n">q_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">k_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="n">v_lora_params</span><span class="o">.</span><span class="n">lora_weights_pointers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
<span class="p">],</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">q_lora_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">)</span>
<span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv_lora</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">qkv_lora_params</span><span class="p">)</span>
<span class="n">qkv_lora</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">q_lora</span><span class="p">,</span> <span class="n">k_lora</span><span class="p">,</span> <span class="n">v_lora</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="n">q_lora</span><span class="o">.</span><span class="n">rank</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">qkv</span> <span class="o">+</span> <span class="n">qkv_lora</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">bert_attention_plugin</span><span class="p">:</span>
<span class="c1"># TRT plugin mode</span>
<span class="k">assert</span> <span class="n">input_lengths</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">bert_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">,</span>
<span class="n">cp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span><span class="p">,</span>
<span class="n">cp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cp_rank</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># plain TRT mode</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transpose_for_scores</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">new_x_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span>
<span class="p">])</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">kv_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span>
<span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">,</span> <span class="n">kv_size</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">query</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">value</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span><span class="p">:</span>
<span class="n">query_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">key_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">compute_relative_bias</span><span class="p">(</span>
<span class="n">query_len</span><span class="p">,</span>
<span class="n">key_len</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_buckets</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="kc">True</span><span class="p">,</span> <span class="c1"># bidirectional</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">bias</span>
<span class="k">if</span> <span class="n">attention_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">expand_mask</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">attention_mask</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">attention_mask</span><span class="p">,</span> <span class="n">attention_scores</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">+</span> <span class="n">attention_mask</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span>
<span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">context</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_hidden_size</span>
<span class="p">]))</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">lora_layer_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">dense_lora_params</span> <span class="o">=</span> <span class="n">lora_layer_params</span><span class="o">.</span><span class="n">get_runtime_params</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;attn_dense&quot;</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">lora_runtime_params</span><span class="o">=</span><span class="n">dense_lora_params</span><span class="p">)</span>
<span class="k">return</span> <span class="n">context</span></div>
</div>
<div class="viewcode-block" id="CogVLMAttention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.CogVLMAttention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">CogVLMAttention</span><span class="p">(</span><span class="n">Attention</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="mf">10000.0</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="p">:</span> <span class="n">QuantMode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="n">dense_bias</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">local_layer_idx</span><span class="o">=</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="n">rotary_embedding_base</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="n">rotary_embedding_scaling</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">quant_mode</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vis_qkv</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span> <span class="o">+</span>
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">is_qkv</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vis_dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<div class="viewcode-block" id="CogVLMAttention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.CogVLMAttention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">vision_token_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">)</span>
<span class="k">assert</span> <span class="p">(</span><span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">vision_qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">vis_qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">language_qkv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qkv</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">vision_token_mask</span><span class="p">,</span> <span class="n">vision_qkv</span><span class="p">,</span> <span class="n">language_qkv</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">apply_rotary_pos_emb_cogvlm</span><span class="p">(</span>
<span class="n">qkv</span><span class="p">,</span> <span class="n">position_embedding</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span> <span class="n">use_cache</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">get_first_past_key_value</span><span class="p">(</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="p">(</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span> <span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectionalglm</span>
<span class="p">],</span> <span class="s1">&#39;Plugin only support masked MHA.&#39;</span>
<span class="c1"># KV cache scales.</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_rcp_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_kv_cache_quant</span><span class="p">(</span>
<span class="p">)</span> <span class="k">else</span> <span class="kc">None</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="o">.</span><span class="n">has_kv_cache_quant</span><span class="p">(</span>
<span class="p">)</span> <span class="k">else</span> <span class="kc">None</span>
<span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span> <span class="o">=</span> <span class="n">gpt_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="o">=</span><span class="n">qkv</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">past_key_value</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_kv_heads</span><span class="p">,</span>
<span class="n">num_kv_heads_origin</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">hidden_size_per_head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_head_size</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">kv_orig_quant_scale</span><span class="o">=</span><span class="n">kv_orig_quant_scale</span><span class="p">,</span>
<span class="n">kv_quant_orig_scale</span><span class="o">=</span><span class="n">kv_quant_orig_scale</span><span class="p">,</span>
<span class="n">attention_output_orig_quant_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">_get_output_orig_quant_scale</span><span class="p">(),</span>
<span class="n">kv_cache_quant_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">max_context_length</span><span class="p">,</span>
<span class="n">mask_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">alibi_slopes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">do_cross_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">cross_kv</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_input_lengths</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_rotary_cos_sin</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">mrope_position_deltas</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_progress</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">vision_dense</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">vis_dense</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="n">language_dense</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">vision_token_mask</span><span class="p">,</span> <span class="n">vision_dense</span><span class="p">,</span> <span class="n">language_dense</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">context</span></div>
</div>
<div class="viewcode-block" id="DeepseekV2Attention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">DeepseekV2Attention</span><span class="p">(</span><span class="n">Attention</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">q_lora_rank</span><span class="p">,</span>
<span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="n">qk_nope_head_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">qk_rope_head_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">v_head_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-06</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">PositionEmbeddingType</span><span class="o">.</span><span class="n">learned_absolute</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="mi">1024</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="mf">10000.0</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_embedding_beta_fast</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="n">rotary_embedding_beta_slow</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">rotary_embedding_mscale</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">rotary_embedding_mscale_all_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">rotary_embedding_origin_max_position</span><span class="o">=</span><span class="mi">4096</span><span class="p">,</span>
<span class="n">rotary_scaling</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="p">:</span> <span class="n">QuantMode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">local_layer_idx</span><span class="o">=</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">max_position_embeddings</span><span class="p">,</span>
<span class="n">attention_head_size</span><span class="o">=</span><span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">attention_mask_type</span><span class="o">=</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_embedding_base</span><span class="o">=</span><span class="n">rotary_embedding_base</span><span class="p">,</span>
<span class="n">rotary_embedding_scaling</span><span class="o">=</span><span class="n">rotary_embedding_scaling</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dense_bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">enable_qkv</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="k">if</span> <span class="n">q_lora_rank</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span> <span class="o">=</span> <span class="n">q_lora_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span> <span class="o">=</span> <span class="n">kv_lora_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">=</span> <span class="n">qk_nope_head_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span> <span class="o">=</span> <span class="n">qk_rope_head_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span> <span class="o">=</span> <span class="n">v_head_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_dim</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="o">=</span> <span class="n">rotary_scaling</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shard_dim</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">def</span><span class="w"> </span><span class="nf">yarn_get_mscale</span><span class="p">(</span><span class="n">scale</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">mscale</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="k">if</span> <span class="n">scale</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="mf">1.0</span>
<span class="k">return</span> <span class="mf">0.1</span> <span class="o">*</span> <span class="n">mscale</span> <span class="o">*</span> <span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">scale</span><span class="p">)</span> <span class="o">+</span> <span class="mf">1.0</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">mscale_all_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mscale_all_dim&quot;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">scaling_factor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span><span class="p">[</span><span class="s2">&quot;factor&quot;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">mscale_all_dim</span><span class="p">:</span>
<span class="n">mscale</span> <span class="o">=</span> <span class="n">yarn_get_mscale</span><span class="p">(</span><span class="n">scaling_factor</span><span class="p">,</span> <span class="n">mscale_all_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">mscale</span> <span class="o">*</span> <span class="n">mscale</span><span class="p">)</span>
<span class="n">_</span><span class="p">,</span> <span class="n">embed_positions_for_gpt_attention</span> <span class="o">=</span> <span class="n">RopeEmbeddingUtils</span><span class="o">.</span><span class="n">create_sinusoidal_positions_yarn</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_base</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">rotary_scaling</span><span class="p">[</span><span class="s2">&quot;factor&quot;</span><span class="p">],</span>
<span class="n">rotary_embedding_origin_max_position</span><span class="p">,</span> <span class="n">rotary_embedding_beta_fast</span><span class="p">,</span>
<span class="n">rotary_embedding_beta_slow</span><span class="p">,</span> <span class="n">rotary_embedding_mscale</span><span class="p">,</span>
<span class="n">rotary_embedding_mscale_all_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_parameter</span><span class="p">(</span>
<span class="s1">&#39;embed_positions_for_gpt_attention&#39;</span><span class="p">,</span>
<span class="n">Parameter</span><span class="p">(</span><span class="n">embed_positions_for_gpt_attention</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale_type</span> <span class="o">=</span> <span class="n">RotaryScalingType</span><span class="o">.</span><span class="n">none</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rotary_embedding_scale</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">q_lora_rank</span> <span class="o">+</span> <span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_a_layernorm</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">q_lora_rank</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_a_layernorm</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">kv_lora_rank</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_b_proj</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">*</span> <span class="mi">2</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k_b_proj_trans</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_b_proj</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">),</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dense_bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">)</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_b_proj</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_b_proj</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">k_b_proj_trans</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<div class="viewcode-block" id="DeepseekV2Attention.weight_loader">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention.weight_loader">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">weight_loader</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">mapping</span><span class="p">:</span> <span class="n">Mapping</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">Parameter</span><span class="p">,</span>
<span class="n">loaded_weight</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="c1"># use_parallel_embedding</span>
<span class="n">tp_rank</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">sharding_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sharding_dim</span>
<span class="n">shard_size</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">_shape</span><span class="p">[</span><span class="n">sharding_dim</span><span class="p">]</span>
<span class="n">start_idx</span> <span class="o">=</span> <span class="n">tp_rank</span> <span class="o">*</span> <span class="n">shard_size</span>
<span class="n">loaded_weight</span> <span class="o">=</span> <span class="n">loaded_weight</span><span class="o">.</span><span class="n">narrow</span><span class="p">(</span><span class="n">sharding_dim</span><span class="p">,</span> <span class="n">start_idx</span><span class="p">,</span>
<span class="n">shard_size</span><span class="p">)</span>
<span class="n">param</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">loaded_weight</span></div>
<div class="viewcode-block" id="DeepseekV2Attention.postprocess">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention.postprocess">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">postprocess</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">split_matrix_tp</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span> <span class="n">idx</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="k">if</span> <span class="n">tp_size</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">v</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">v</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">)[</span><span class="n">idx</span><span class="p">]</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="n">dim</span><span class="p">)[</span><span class="n">idx</span><span class="p">]</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="k">if</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s2">&quot;q_b_proj&quot;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">q_b_proj_weight</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">unflatten</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span>
<span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="p">],</span>
<span class="p">)</span>
<span class="n">q_b_proj_weight</span> <span class="o">=</span> <span class="n">split_matrix_tp</span><span class="p">(</span>
<span class="n">q_b_proj_weight</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">q_b_proj_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span>
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">)</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s2">&quot;kv_b_proj&quot;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">kv_b_proj_weight</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">unflatten</span><span class="p">(</span>
<span class="mi">0</span><span class="p">,</span>
<span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">,</span>
<span class="p">],</span>
<span class="p">)</span>
<span class="n">kv_b_proj_weight</span> <span class="o">=</span> <span class="n">split_matrix_tp</span><span class="p">(</span>
<span class="n">kv_b_proj_weight</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">k_nope_weight</span><span class="p">,</span> <span class="n">v_weight</span> <span class="o">=</span> <span class="n">kv_b_proj_weight</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span>
<span class="n">k_nope_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">),</span>
<span class="n">v_weight</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span> <span class="o">//</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">)</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">find</span><span class="p">(</span><span class="s2">&quot;k_b_proj_trans&quot;</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
<span class="n">kv_b_proj</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">unflatten</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span>
<span class="p">])</span>
<span class="n">kv_b_proj</span> <span class="o">=</span> <span class="n">split</span><span class="p">(</span><span class="n">kv_b_proj</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">k_nope_weight</span><span class="p">,</span> <span class="n">v_weight</span> <span class="o">=</span> <span class="n">kv_b_proj</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">k_nope_weight</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">)</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="p">}</span></div>
<div class="viewcode-block" id="DeepseekV2Attention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DeepseekV2Attention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="n">SpecDecodingParams</span><span class="p">(</span>
<span class="p">)</span> <span class="k">if</span> <span class="n">spec_decoding_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">spec_decoding_params</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">hidden_states</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="k">assert</span> <span class="n">attention_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span> <span class="n">use_cache</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">is_valid</span><span class="p">(</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">)</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="kc">None</span> <span class="k">if</span> <span class="n">kv_cache_params</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">get_first_past_key_value</span><span class="p">(</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_deepseek_v2_lite</span><span class="p">:</span>
<span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span><span class="o">.</span><span class="n">split</span><span class="p">(</span>
<span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">compressed_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_a_layernorm</span><span class="p">(</span><span class="n">compressed_kv</span><span class="p">)</span>
<span class="n">input_qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">hidden_states</span><span class="p">,</span> <span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span><span class="p">],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">compressed_q</span><span class="p">,</span> <span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fused_a</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="p">)</span><span class="o">.</span><span class="n">split</span><span class="p">([</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span>
<span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">compressed_q</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">q_a_layernorm</span><span class="p">(</span><span class="n">compressed_q</span><span class="p">)</span>
<span class="n">compressed_kv</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_a_layernorm</span><span class="p">(</span><span class="n">compressed_kv</span><span class="p">)</span>
<span class="n">input_qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">compressed_q</span><span class="p">,</span> <span class="n">compressed_kv</span><span class="p">,</span> <span class="n">k_pe</span><span class="p">],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="ow">and</span> <span class="p">(</span><span class="n">past_key_value</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">):</span>
<span class="n">past_key_value</span> <span class="o">=</span> <span class="n">kv_cache_params</span><span class="o">.</span><span class="n">past_key_value</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span> <span class="ow">in</span> <span class="p">[</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">causal</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectional</span><span class="p">,</span>
<span class="n">AttentionMaskType</span><span class="o">.</span><span class="n">bidirectionalglm</span><span class="p">,</span>
<span class="p">],</span> <span class="s1">&#39;Plugin only support masked MHA.&#39;</span>
<span class="c1"># KV cache scales.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_rcp_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_scaling_factor</span><span class="o">.</span><span class="n">value</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kv_orig_quant_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">kv_quant_orig_scale</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">rotary_cos_sin</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed_positions_for_gpt_attention</span><span class="o">.</span><span class="n">value</span>
<span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span> <span class="o">=</span> <span class="n">gpt_attention</span><span class="p">(</span>
<span class="n">qkv</span><span class="o">=</span><span class="n">input_qkv</span><span class="p">,</span>
<span class="n">past_key_value</span><span class="o">=</span><span class="n">past_key_value</span><span class="p">,</span>
<span class="n">sequence_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span>
<span class="n">host_past_key_value_lengths</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_max_attention_window_sizes</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_max_attention_window_sizes</span><span class="p">,</span>
<span class="n">host_sink_token_length</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_sink_token_length</span><span class="p">,</span>
<span class="n">context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">cache_indirection</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cache_indirection</span><span class="p">,</span>
<span class="n">host_request_types</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span><span class="p">,</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">local_layer_idx</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">num_kv_heads_origin</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">hidden_size_per_head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">position_embedding_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">position_embedding_type</span><span class="p">,</span>
<span class="n">rotary_inv_freq</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">rotary_cos_sin</span><span class="o">=</span><span class="n">rotary_cos_sin</span><span class="p">,</span>
<span class="n">kv_orig_quant_scale</span><span class="o">=</span><span class="n">kv_orig_quant_scale</span><span class="p">,</span>
<span class="n">kv_quant_orig_scale</span><span class="o">=</span><span class="n">kv_quant_orig_scale</span><span class="p">,</span>
<span class="n">attention_output_orig_quant_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span>
<span class="n">_get_output_orig_quant_scale</span><span class="p">(),</span>
<span class="n">kv_cache_quant_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">max_context_length</span><span class="p">,</span>
<span class="n">mask_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">attention_mask_type</span><span class="p">,</span>
<span class="n">block_sparse_block_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span><span class="n">block_size</span><span class="p">,</span>
<span class="n">block_sparse_homo_head_pattern</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">homo_head_pattern</span><span class="p">,</span>
<span class="n">block_sparse_num_local_blocks</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">num_local_blocks</span><span class="p">,</span>
<span class="n">block_sparse_vertical_stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">block_sparse_params</span><span class="o">.</span>
<span class="n">vertical_stride</span><span class="p">,</span>
<span class="n">alibi_slopes</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span><span class="n">kv_cache_block_offsets</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_block_offsets</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_block_offsets</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_block_offsets</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_pointers</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_pointers</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span> <span class="k">else</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_cross_kv_cache_pool_pointers</span><span class="p">,</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="o">.</span>
<span class="n">host_kv_cache_pool_mapping</span><span class="p">,</span>
<span class="n">do_cross_attention</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">cross_kv</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">cross_kv_length</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">encoder_input_lengths</span><span class="p">,</span>
<span class="n">relative_attention_bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">rel_attn_table</span><span class="o">.</span><span class="n">value</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">relative_attention</span> <span class="k">else</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">host_context_lengths</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="n">use_cache</span><span class="p">,</span>
<span class="n">spec_decoding_is_generation_length_variable</span><span class="o">=</span><span class="n">spec_decoding_params</span>
<span class="o">.</span><span class="n">spec_decoding_is_generation_length_variable</span><span class="p">,</span>
<span class="n">spec_decoding_max_generation_length</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_max_generation_length</span><span class="p">,</span>
<span class="n">spec_decoding_generation_lengths</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">,</span>
<span class="n">spec_decoding_packed_mask</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_packed_mask</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span><span class="n">spec_decoding_use</span><span class="p">,</span>
<span class="n">attn_logit_softcapping_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_attn_value</span><span class="p">,</span>
<span class="n">host_runtime_perf_knobs</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span>
<span class="n">host_runtime_perf_knobs</span><span class="p">,</span>
<span class="n">host_context_progress</span><span class="o">=</span><span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_progress</span><span class="p">,</span>
<span class="n">is_mla_enabled_flag</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">q_lora_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_lora_rank</span><span class="p">,</span>
<span class="n">kv_lora_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_lora_rank</span><span class="p">,</span>
<span class="n">qk_nope_head_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_nope_head_dim</span><span class="p">,</span>
<span class="n">qk_rope_head_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">qk_rope_head_dim</span><span class="p">,</span>
<span class="n">v_head_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">v_head_dim</span><span class="p">,</span>
<span class="n">fused_q_proj</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">fused_q_proj</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">q_b_proj</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_b_proj</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">kv_b_proj</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">kv_b_proj</span><span class="o">.</span><span class="n">value</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">context</span><span class="p">)</span>
<span class="k">if</span> <span class="n">use_cache</span><span class="p">:</span>
<span class="k">return</span> <span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="n">past_key_value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">context</span></div>
</div>
<div class="viewcode-block" id="DiffusersAttention">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DiffusersAttention">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">DiffusersAttention</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">query_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">cross_attention_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">heads</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span><span class="p">,</span>
<span class="n">kv_heads</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">dim_head</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">64</span><span class="p">,</span>
<span class="n">dropout</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">upcast_attention</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">upcast_softmax</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">cross_attention_norm</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_norm_num_groups</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span>
<span class="n">qk_norm</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">added_kv_proj_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">added_proj_bias</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">norm_num_groups</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">spatial_norm_dim</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">out_bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">scale_qk</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">only_cross_attention</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">rescale_output_factor</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">residual_connection</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">out_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">out_context_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">context_pre_only</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">pre_only</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">is_causal</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">attn_forward_funcname</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;joint_attn_forward&#39;</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">Mapping</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">cp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">cp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attn_forward_func</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">attn_forward_funcname</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span> <span class="o">=</span> <span class="n">out_dim</span> <span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">dim_head</span> <span class="o">*</span> <span class="n">heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span> <span class="k">if</span> <span class="n">kv_heads</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">dim_head</span> <span class="o">*</span> <span class="n">kv_heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">query_dim</span> <span class="o">=</span> <span class="n">query_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_cross_attention</span> <span class="o">=</span> <span class="n">cross_attention_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span> <span class="o">=</span> <span class="n">cross_attention_dim</span> <span class="k">if</span> <span class="n">cross_attention_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">query_dim</span>
<span class="c1">## [TODO] Not supported yet.</span>
<span class="c1"># self.upcast_attention = upcast_attention</span>
<span class="c1"># self.upcast_softmax = upcast_softmax</span>
<span class="c1"># self.rescale_output_factor = rescale_output_factor</span>
<span class="c1"># self.residual_connection = residual_connection</span>
<span class="c1"># self.dropout = dropout</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fused_projections</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_dim</span> <span class="o">=</span> <span class="n">out_dim</span> <span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">query_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span> <span class="o">=</span> <span class="n">context_pre_only</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pre_only</span> <span class="o">=</span> <span class="n">pre_only</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_causal</span> <span class="o">=</span> <span class="n">is_causal</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale_qk</span> <span class="o">=</span> <span class="n">scale_qk</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">dim_head</span><span class="o">**-</span><span class="mf">0.5</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_qk</span> <span class="k">else</span> <span class="mf">1.0</span>
<span class="c1"># Params for `Attention` Module</span>
<span class="bp">self</span><span class="o">.</span><span class="n">heads</span> <span class="o">=</span> <span class="n">out_dim</span> <span class="o">//</span> <span class="n">dim_head</span> <span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">heads</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dim_head</span> <span class="o">=</span> <span class="n">dim_head</span>
<span class="c1"># default attn settings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">dim_head</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span> <span class="o">=</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="o">=</span> <span class="n">added_kv_proj_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">only_cross_attention</span> <span class="o">=</span> <span class="n">only_cross_attention</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">only_cross_attention</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`.&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">norm_num_groups</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">group_norm</span> <span class="o">=</span> <span class="n">GroupNorm</span><span class="p">(</span><span class="n">num_channels</span><span class="o">=</span><span class="n">query_dim</span><span class="p">,</span>
<span class="n">num_groups</span><span class="o">=</span><span class="n">norm_num_groups</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">affine</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">group_norm</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">spatial_norm_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s2">&quot;SpatialNorm is not supported yet.&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">spatial_norm</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">qk_norm</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="n">elementwise_affine</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="n">elementwise_affine</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;fp32_layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;rms_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;rms_norm_across_heads&quot;</span><span class="p">:</span>
<span class="c1"># LTX applies qk norm across all heads</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span> <span class="o">*</span> <span class="n">heads</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span> <span class="o">*</span> <span class="n">kv_heads</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;layer_norm_across_heads&quot;</span><span class="p">,</span> <span class="s2">&quot;l2&quot;</span><span class="p">]:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;qk_norm </span><span class="si">{</span><span class="n">qk_norm</span><span class="si">}</span><span class="s2"> is not supported yet.&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;unknown qk_norm: </span><span class="si">{</span><span class="n">qk_norm</span><span class="si">}</span><span class="s2">. Should be None,&#39;layer_norm&#39;,&#39;fp32_layer_norm&#39;,&#39;rms_norm&#39;&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">cross_attention_norm</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_cross</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">elif</span> <span class="n">cross_attention_norm</span> <span class="o">==</span> <span class="s2">&quot;layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_cross</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">cross_attention_norm</span> <span class="o">==</span> <span class="s2">&quot;group_norm&quot;</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># The given `encoder_hidden_states` are initially of shape</span>
<span class="c1"># (batch_size, seq_len, added_kv_proj_dim) before being projected</span>
<span class="c1"># to (batch_size, seq_len, cross_attention_dim). The norm is applied</span>
<span class="c1"># before the projection, so we need to use `added_kv_proj_dim` as</span>
<span class="c1"># the number of channels for the group norm.</span>
<span class="n">norm_cross_num_channels</span> <span class="o">=</span> <span class="n">added_kv_proj_dim</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">norm_cross_num_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_cross</span> <span class="o">=</span> <span class="n">GroupNorm</span><span class="p">(</span>
<span class="n">num_channels</span><span class="o">=</span><span class="n">norm_cross_num_channels</span><span class="p">,</span>
<span class="n">num_groups</span><span class="o">=</span><span class="n">cross_attention_norm_num_groups</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span>
<span class="n">affine</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;unknown cross_attention_norm: </span><span class="si">{</span><span class="n">cross_attention_norm</span><span class="si">}</span><span class="s2">. Should be None, &#39;layer_norm&#39; or &#39;group_norm&#39;&quot;</span>
<span class="p">)</span>
<span class="c1"># [TODO] check `gather_output`</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_q</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">query_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">only_cross_attention</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_k</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_v</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cross_attention_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_k</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_v</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">added_proj_bias</span> <span class="o">=</span> <span class="n">added_proj_bias</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_k_proj</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">added_kv_proj_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">added_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_v_proj</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">added_kv_proj_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_kv_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">added_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_q_proj</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">added_kv_proj_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">added_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_q_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_k_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_v_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">pre_only</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_out</span> <span class="o">=</span> <span class="n">ModuleList</span><span class="p">([</span>
<span class="n">RowLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">out_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="p">])</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_out</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_add_out</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inner_dim</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_dim</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="n">out_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">to_add_out</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">qk_norm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">added_kv_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;fp32_layer_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">qk_norm</span> <span class="o">==</span> <span class="s2">&quot;rms_norm&quot;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="o">=</span> <span class="n">RmsNorm</span><span class="p">(</span><span class="n">dim_head</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="n">eps</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;unknown qk_norm: </span><span class="si">{</span><span class="n">qk_norm</span><span class="si">}</span><span class="s2">. Should be one of `None,&#39;layer_norm&#39;,&#39;fp32_layer_norm&#39;,&#39;rms_norm&#39;`&quot;</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="o">=</span> <span class="kc">None</span>
<div class="viewcode-block" id="DiffusersAttention.joint_attn_forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DiffusersAttention.joint_attn_forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">joint_attn_forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">encoder_hidden_states</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">if</span> <span class="n">attention_mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">identity</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># `sample` projections.</span>
<span class="n">query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_q</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_k</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_v</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">head_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dim_head</span>
<span class="n">inner_dim</span> <span class="o">=</span> <span class="n">head_dim</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_q</span><span class="p">(</span><span class="n">query</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_k</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="c1"># `context` projections.</span>
<span class="k">if</span> <span class="n">encoder_hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_hidden_states_query_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_q_proj</span><span class="p">(</span>
<span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="n">encoder_hidden_states_key_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_k_proj</span><span class="p">(</span>
<span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="n">encoder_hidden_states_value_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_v_proj</span><span class="p">(</span>
<span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="n">encoder_hidden_states_query_proj</span> <span class="o">=</span> <span class="n">encoder_hidden_states_query_proj</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">encoder_hidden_states_key_proj</span> <span class="o">=</span> <span class="n">encoder_hidden_states_key_proj</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">encoder_hidden_states_value_proj</span> <span class="o">=</span> <span class="n">encoder_hidden_states_value_proj</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">]))</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_hidden_states_query_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_q</span><span class="p">(</span>
<span class="n">encoder_hidden_states_query_proj</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_hidden_states_key_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm_added_k</span><span class="p">(</span>
<span class="n">encoder_hidden_states_key_proj</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">query</span><span class="p">,</span> <span class="n">encoder_hidden_states_query_proj</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">key</span><span class="p">,</span> <span class="n">encoder_hidden_states_key_proj</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">value</span><span class="p">,</span> <span class="n">encoder_hidden_states_value_proj</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="c1"># Transpose from [batch_size, num_heads, seq_len, head_dim] back to</span>
<span class="c1"># [batch_size, seq_len, num_heads * head_dim] for attention plugin.</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">query</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span>
<span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">inner_dim</span><span class="p">]))</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">value</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span>
<span class="mi">3</span><span class="p">])</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">([</span><span class="n">batch_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">bert_attention_plugin</span><span class="p">:</span>
<span class="c1"># TRT plugin mode</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">==</span> <span class="mi">1</span>
<span class="n">shape</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qkv</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span><span class="p">],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span>
<span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s2">&quot;int32&quot;</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">bert_attention</span><span class="p">(</span><span class="n">qkv</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span>
<span class="n">head_dim</span><span class="p">,</span>
<span class="n">q_scaling</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span><span class="p">,</span>
<span class="n">relative_attention</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">max_distance</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_distance</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># plain TRT mode</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transpose_for_scores</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">new_x_shape</span> <span class="o">=</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">heads</span><span class="p">,</span> <span class="n">head_dim</span><span class="p">])</span>
<span class="k">return</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">new_x_shape</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">&gt;</span> <span class="mi">1</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">allgather</span><span class="p">(</span><span class="n">value</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">cp_group</span><span class="p">,</span> <span class="n">gather_dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">query</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">query</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="n">value</span> <span class="o">=</span> <span class="n">transpose_for_scores</span><span class="p">(</span><span class="n">value</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">key</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">,</span> <span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">attention_scores</span> <span class="o">=</span> <span class="n">attention_scores</span> <span class="o">/</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q_scaling</span> <span class="o">*</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm_factor</span><span class="p">)</span>
<span class="n">attention_probs</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">attention_scores</span><span class="p">,</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">context</span> <span class="o">=</span> <span class="n">matmul</span><span class="p">(</span><span class="n">attention_probs</span><span class="p">,</span> <span class="n">value</span><span class="p">,</span>
<span class="n">use_fp32_acc</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">context</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">([</span><span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span>
<span class="n">shape</span><span class="p">(</span><span class="n">context</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="k">if</span> <span class="n">encoder_hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># Split the attention outputs.</span>
<span class="n">slice_seq_len</span> <span class="o">=</span> <span class="n">shape</span><span class="p">(</span><span class="n">residual</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">encoder_hidden_states</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="n">concat</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">slice_seq_len</span><span class="p">,</span> <span class="mi">0</span><span class="p">]),</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">concat</span><span class="p">([</span>
<span class="n">batch_size</span><span class="p">,</span>
<span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">-</span>
<span class="n">slice_seq_len</span><span class="p">),</span> <span class="n">inner_dim</span>
<span class="p">]))</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">slice_seq_len</span><span class="p">,</span> <span class="n">inner_dim</span><span class="p">]))</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">context_pre_only</span><span class="p">:</span>
<span class="n">encoder_hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_add_out</span><span class="p">(</span><span class="n">encoder_hidden_states</span><span class="p">)</span>
<span class="c1"># linear proj</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">to_out</span><span class="p">[</span><span class="mi">0</span><span class="p">](</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="k">if</span> <span class="n">encoder_hidden_states</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">encoder_hidden_states</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">hidden_states</span></div>
<div class="viewcode-block" id="DiffusersAttention.forward">
<a class="viewcode-back" href="../../../python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.attention.DiffusersAttention.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">encoder_hidden_states</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">attn_forward_func</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">encoder_hidden_states</span><span class="o">=</span><span class="n">encoder_hidden_states</span><span class="p">,</span>
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">,</span>
<span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
</div>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on September 02, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/e81c50d">e81c50d</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>