TensorRT-LLMs/_modules/tensorrt_llm/llmapi/llm.html
2025-09-04 03:19:11 +00:00

1701 lines
196 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.llmapi.llm &#8212; TensorRT-LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../_static/custom.css?v=95073da6" />
<!-- So that users can add custom icons -->
<script src="../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/llmapi/llm';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.1.0rc3';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.1.0rc3" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../release-notes.html">Release Notes</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-llama4-scout-on-trtllm.html">Quick Start Recipe for Llama4 Scout 17B on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-deepseek-r1-on-trtllm.html">Quick Start Recipe for DeepSeek R1 on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-llama3.3-70b-on-trtllm.html">Quick Start Recipe for Llama3.3 70B on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../deployment-guide/quick-start-recipe-for-gpt-oss-on-trtllm.html">Quick Start Recipe for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../examples/customization.html">LLM Common Customizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/lora.html">Run gpt-2b + LoRA using Executor / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/kv-cache-management.html">KV Cache Management: Pools, Blocks, and Events</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../advanced/disaggregated-service.html">Disaggregated-Service (Prototype)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../performance/performance-tuning-guide/index.html">Performance Tuning Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/useful-build-time-flags.html">Useful Build-Time Flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/fp8-quantization.html">FP8 Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../performance/performance-tuning-guide/useful-runtime-flags.html">Useful Runtime Options</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../reference/dev-containers.html">Using Dev Containers</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT-LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT-LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRTLLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT-LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT-LLM</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.llmapi.llm</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.llmapi.llm</h1><div class="highlight"><pre>
<span></span><span class="kn">import</span><span class="w"> </span><span class="nn">atexit</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">json</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">os</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">shutil</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">socket</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tempfile</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">time</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">weakref</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pathlib</span><span class="w"> </span><span class="kn">import</span> <span class="n">Path</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Literal</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tqdm</span><span class="w"> </span><span class="kn">import</span> <span class="n">tqdm</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">transformers</span><span class="w"> </span><span class="kn">import</span> <span class="n">PreTrainedTokenizerBase</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.inputs.data</span><span class="w"> </span><span class="kn">import</span> <span class="n">TextPrompt</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.inputs.multimodal</span><span class="w"> </span><span class="kn">import</span> <span class="n">MultimodalParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.inputs.registry</span><span class="w"> </span><span class="kn">import</span> <span class="n">DefaultInputProcessor</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">nvtx_range_debug</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..bindings</span><span class="w"> </span><span class="kn">import</span> <span class="n">executor</span> <span class="k">as</span> <span class="n">tllm</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..builder</span><span class="w"> </span><span class="kn">import</span> <span class="n">EngineConfig</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..disaggregated_params</span><span class="w"> </span><span class="kn">import</span> <span class="n">DisaggregatedParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..executor</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">DetokenizedGenerationResultBase</span><span class="p">,</span> <span class="n">GenerationExecutor</span><span class="p">,</span>
<span class="n">GenerationResult</span><span class="p">,</span> <span class="n">IterationResult</span><span class="p">,</span> <span class="n">LoRARequest</span><span class="p">,</span>
<span class="n">PostprocWorkerConfig</span><span class="p">,</span> <span class="n">PromptAdapterRequest</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..executor.postproc_worker</span><span class="w"> </span><span class="kn">import</span> <span class="n">PostprocParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..executor.utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">create_mpi_comm_session</span><span class="p">,</span>
<span class="n">get_spawn_proxy_process_env</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..inputs</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">PromptInputs</span><span class="p">,</span> <span class="n">create_input_processor</span><span class="p">,</span>
<span class="n">create_input_processor_with_hash</span><span class="p">,</span> <span class="n">prompt_inputs</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..logger</span><span class="w"> </span><span class="kn">import</span> <span class="n">logger</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..sampling_params</span><span class="w"> </span><span class="kn">import</span> <span class="n">SamplingParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..scheduling_params</span><span class="w"> </span><span class="kn">import</span> <span class="n">SchedulingParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.llm_args</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">TORCH_LLMARGS_EXPLICIT_DOCSTRING</span><span class="p">,</span>
<span class="n">TRT_LLMARGS_EXPLICIT_DOCSTRING</span><span class="p">,</span> <span class="n">PeftCacheConfig</span><span class="p">,</span>
<span class="n">PybindMirror</span><span class="p">,</span> <span class="n">TorchLlmArgs</span><span class="p">,</span> <span class="n">TrtLlmArgs</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.llm_utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">CachedModelLoader</span><span class="p">,</span> <span class="n">KvCacheRetentionConfig</span><span class="p">,</span>
<span class="n">LlmBuildStats</span><span class="p">,</span> <span class="n">ModelLoader</span><span class="p">,</span> <span class="n">_ModelRuntimeContext</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.mpi_session</span><span class="w"> </span><span class="kn">import</span> <span class="n">MpiPoolSession</span><span class="p">,</span> <span class="n">external_mpi_comm_available</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.tokenizer</span><span class="w"> </span><span class="kn">import</span> <span class="n">TokenizerBase</span><span class="p">,</span> <span class="n">_xgrammar_tokenizer_info</span>
<span class="c1"># TODO[chunweiy]: move the following symbols back to utils scope, and remove the following import</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.utils</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">append_docstring</span><span class="p">,</span> <span class="n">exception_handler</span><span class="p">,</span> <span class="n">get_device_count</span><span class="p">,</span>
<span class="n">print_colored_debug</span><span class="p">,</span> <span class="n">set_api_status</span><span class="p">)</span>
<div class="viewcode-block" id="RequestOutput">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.llmapi.RequestOutput">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">RequestOutput</span><span class="p">(</span><span class="n">DetokenizedGenerationResultBase</span><span class="p">,</span> <span class="n">GenerationResult</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;The output data of a completion request to the LLM.</span>
<span class="sd"> Attributes:</span>
<span class="sd"> request_id (int): The unique ID of the request.</span>
<span class="sd"> prompt (str, optional): The prompt string of the request.</span>
<span class="sd"> prompt_token_ids (List[int]): The token ids of the prompt.</span>
<span class="sd"> outputs (List[CompletionOutput]): The output sequences of the request.</span>
<span class="sd"> context_logits (torch.Tensor, optional): The logits on the prompt token ids.</span>
<span class="sd"> mm_embedding_handle (Dict[str, Any], optional): The multimodal embedding handle of the request.</span>
<span class="sd"> finished (bool): Whether the whole request is finished.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<div class="viewcode-block" id="RequestOutput.__init__">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.llmapi.RequestOutput.__init__">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2"> is designed to be instantiated using </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">._from_generation_result by GenerationExecutor. &quot;</span>
<span class="sa">f</span><span class="s2">&quot;Users are not expected to create </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2"> directly.&quot;</span>
<span class="p">)</span></div>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_from_generation_result</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">generation_result</span><span class="p">:</span> <span class="n">GenerationResult</span><span class="p">,</span>
<span class="n">prompt</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">TokenizerBase</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s1">&#39;RequestOutput&#39;</span><span class="p">:</span>
<span class="n">inst</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="fm">__new__</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span>
<span class="n">inst</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">generation_result</span><span class="o">.</span><span class="vm">__dict__</span><span class="p">)</span>
<span class="n">inst</span><span class="o">.</span><span class="n">tokenizer</span> <span class="o">=</span> <span class="n">tokenizer</span>
<span class="n">inst</span><span class="o">.</span><span class="n">_streaming</span> <span class="o">=</span> <span class="n">generation_result</span><span class="o">.</span><span class="n">_streaming</span>
<span class="n">inst</span><span class="o">.</span><span class="n">_prompt</span> <span class="o">=</span> <span class="n">prompt</span>
<span class="k">return</span> <span class="n">inst</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">prompt</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prompt</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_repr_fields</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="p">[</span>
<span class="s2">&quot;request_id&quot;</span><span class="p">,</span> <span class="s2">&quot;prompt&quot;</span><span class="p">,</span> <span class="s2">&quot;prompt_token_ids&quot;</span><span class="p">,</span> <span class="s2">&quot;outputs&quot;</span><span class="p">,</span> <span class="s2">&quot;finished&quot;</span><span class="p">,</span>
<span class="s2">&quot;mm_embedding_handle&quot;</span>
<span class="p">]</span></div>
<span class="n">TRT_LLM_DOCSTRING</span> <span class="o">=</span> <span class="n">TRT_LLMARGS_EXPLICIT_DOCSTRING</span> <span class="o">+</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2"> Attributes:</span>
<span class="s2"> tokenizer (tensorrt_llm.llmapi.tokenizer.TokenizerBase, optional): The tokenizer loaded by LLM instance, if any.</span>
<span class="s2"> workspace (pathlib.Path): The directory to store intermediate files.</span>
<span class="s2"> llm_id (str): The unique ID of the LLM instance.</span>
<span class="s2">&quot;&quot;&quot;</span>
<span class="n">TORCH_LLM_DOCSTRING</span> <span class="o">=</span> <span class="n">TORCH_LLMARGS_EXPLICIT_DOCSTRING</span> <span class="o">+</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2"> Attributes:</span>
<span class="s2"> tokenizer (tensorrt_llm.llmapi.tokenizer.TokenizerBase, optional): The tokenizer loaded by LLM instance, if any.</span>
<span class="s2"> llm_id (str): The unique ID of the LLM instance.</span>
<span class="s2">&quot;&quot;&quot;</span>
<span class="k">class</span><span class="w"> </span><span class="nc">BaseLLM</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> The base class for all LLM classes.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">model</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">],</span>
<span class="n">tokenizer</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">,</span> <span class="n">TokenizerBase</span><span class="p">,</span>
<span class="n">PreTrainedTokenizerBase</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_mode</span><span class="p">:</span> <span class="n">Literal</span><span class="p">[</span><span class="s1">&#39;auto&#39;</span><span class="p">,</span> <span class="s1">&#39;slow&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;auto&#39;</span><span class="p">,</span>
<span class="n">skip_tokenizer_init</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">tensor_parallel_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;auto&quot;</span><span class="p">,</span>
<span class="n">revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_cls</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">&quot;executor_cls&quot;</span><span class="p">,</span> <span class="n">GenerationExecutor</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_llm_id</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">log_level</span> <span class="o">=</span> <span class="n">logger</span><span class="o">.</span><span class="n">level</span>
<span class="n">logger</span><span class="o">.</span><span class="n">set_level</span><span class="p">(</span><span class="s2">&quot;info&quot;</span><span class="p">)</span> <span class="c1"># force display the backend</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">backend</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;backend&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">backend</span> <span class="o">==</span> <span class="s2">&quot;pytorch&quot;</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s2">&quot;Using LLM with PyTorch backend&quot;</span><span class="p">)</span>
<span class="n">llm_args_cls</span> <span class="o">=</span> <span class="n">TorchLlmArgs</span>
<span class="k">elif</span> <span class="n">backend</span> <span class="o">==</span> <span class="s1">&#39;_autodeploy&#39;</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s2">&quot;Using LLM with AutoDeploy backend&quot;</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._torch.auto_deploy.llm_args</span><span class="w"> </span><span class="kn">import</span> \
<span class="n">LlmArgs</span> <span class="k">as</span> <span class="n">AutoDeployLlmArgs</span>
<span class="n">llm_args_cls</span> <span class="o">=</span> <span class="n">AutoDeployLlmArgs</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s2">&quot;Using LLM with TensorRT backend&quot;</span><span class="p">)</span>
<span class="n">llm_args_cls</span> <span class="o">=</span> <span class="n">TrtLlmArgs</span>
<span class="c1"># check the kwargs and raise ValueError directly</span>
<span class="n">valid_keys</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span>
<span class="nb">list</span><span class="p">(</span><span class="n">llm_args_cls</span><span class="o">.</span><span class="n">model_fields</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span> <span class="o">+</span>
<span class="p">[</span><span class="s1">&#39;_mpi_session&#39;</span><span class="p">,</span> <span class="s1">&#39;backend&#39;</span><span class="p">])</span>
<span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">valid_keys</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="vm">__class__</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2"> got invalid argument: </span><span class="si">{</span><span class="n">key</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span> <span class="o">=</span> <span class="n">llm_args_cls</span><span class="o">.</span><span class="n">from_kwargs</span><span class="p">(</span>
<span class="n">model</span><span class="o">=</span><span class="n">model</span><span class="p">,</span>
<span class="n">tokenizer</span><span class="o">=</span><span class="n">tokenizer</span><span class="p">,</span>
<span class="n">tokenizer_mode</span><span class="o">=</span><span class="n">tokenizer_mode</span><span class="p">,</span>
<span class="n">skip_tokenizer_init</span><span class="o">=</span><span class="n">skip_tokenizer_init</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="o">=</span><span class="n">trust_remote_code</span><span class="p">,</span>
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="n">tensor_parallel_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">revision</span><span class="o">=</span><span class="n">revision</span><span class="p">,</span>
<span class="n">tokenizer_revision</span><span class="o">=</span><span class="n">tokenizer_revision</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">error</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Failed to parse the arguments for the LLM constructor: </span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="k">raise</span> <span class="n">e</span>
<span class="k">finally</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">set_level</span><span class="p">(</span><span class="n">log_level</span><span class="p">)</span> <span class="c1"># restore the log level</span>
<span class="n">print_colored_debug</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;LLM.args.mpi_session: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">mpi_session</span><span class="si">}</span><span class="se">\n</span><span class="s2">&quot;</span><span class="p">,</span>
<span class="s2">&quot;yellow&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">mpi_session</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">is_multi_gpu</span><span class="p">:</span>
<span class="k">if</span> <span class="n">get_device_count</span><span class="p">(</span>
<span class="p">)</span> <span class="o">&lt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size_per_node</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Only </span><span class="si">{</span><span class="n">get_device_count</span><span class="p">()</span><span class="si">}</span><span class="s2"> GPUs are available, but </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="si">}</span><span class="s2"> are required.&quot;</span>
<span class="p">)</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span>
<span class="sa">f</span><span class="s1">&#39;start MpiSession with </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="si">}</span><span class="s1"> workers&#39;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="p">:</span>
<span class="n">mpi_process_pre_spawned</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="n">get_spawn_proxy_process_env</span><span class="p">()</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">mpi_process_pre_spawned</span><span class="p">:</span>
<span class="n">print_colored_debug</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;LLM create MpiPoolSession</span><span class="se">\n</span><span class="s2">&quot;</span><span class="p">,</span>
<span class="s2">&quot;yellow&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="o">=</span> <span class="n">MpiPoolSession</span><span class="p">(</span>
<span class="n">n_workers</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">print_colored_debug</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;LLM create MpiCommSession</span><span class="se">\n</span><span class="s2">&quot;</span><span class="p">,</span>
<span class="s2">&quot;yellow&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="o">=</span> <span class="n">create_mpi_comm_session</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="p">)</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># Due to the Executor can only accept a engine path, we need to save the engine to a directory</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Path</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">GenerationExecutor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_on_trt_backend</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_workspace</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">TemporaryDirectory</span><span class="p">(</span>
<span class="n">suffix</span><span class="o">=</span><span class="s2">&quot;-llm-workspace&quot;</span><span class="p">,</span> <span class="nb">dir</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">workspace</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_workspace</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_hf_model_dir</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Path</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">runtime_context</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">_ModelRuntimeContext</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">llm_build_stats</span> <span class="o">=</span> <span class="n">LlmBuildStats</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_build_model</span><span class="p">()</span>
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="k">raise</span>
<span class="n">exception_handler</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">&#39;shutdown&#39;</span><span class="p">)</span>
<span class="n">atexit</span><span class="o">.</span><span class="n">register</span><span class="p">(</span><span class="n">LLM</span><span class="o">.</span><span class="n">_shutdown_wrapper</span><span class="p">,</span> <span class="n">weakref</span><span class="o">.</span><span class="n">ref</span><span class="p">(</span><span class="bp">self</span><span class="p">))</span>
<span class="nd">@property</span>
<span class="nd">@set_api_status</span><span class="p">(</span><span class="s2">&quot;beta&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">llm_id</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_llm_id</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">hostname</span> <span class="o">=</span> <span class="n">socket</span><span class="o">.</span><span class="n">gethostname</span><span class="p">()</span>
<span class="n">pid</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">getpid</span><span class="p">()</span>
<span class="n">timestamp</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">time</span><span class="o">.</span><span class="n">time</span><span class="p">()</span> <span class="o">*</span> <span class="mi">1000</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_llm_id</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">hostname</span><span class="si">}</span><span class="s2">-</span><span class="si">{</span><span class="n">pid</span><span class="si">}</span><span class="s2">-</span><span class="si">{</span><span class="n">timestamp</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_llm_id</span>
<span class="k">def</span><span class="w"> </span><span class="nf">generate</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">inputs</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">PromptInputs</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">PromptInputs</span><span class="p">]],</span>
<span class="n">sampling_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">SamplingParams</span><span class="p">,</span>
<span class="n">List</span><span class="p">[</span><span class="n">SamplingParams</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">use_tqdm</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">lora_request</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">LoRARequest</span><span class="p">,</span>
<span class="n">Sequence</span><span class="p">[</span><span class="n">LoRARequest</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_adapter_request</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span>
<span class="n">PromptAdapterRequest</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">PromptAdapterRequest</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_retention_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span>
<span class="n">KvCacheRetentionConfig</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">KvCacheRetentionConfig</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">disaggregated_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span>
<span class="n">DisaggregatedParams</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">DisaggregatedParams</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">scheduling_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">SchedulingParams</span><span class="p">,</span>
<span class="n">List</span><span class="p">[</span><span class="n">SchedulingParams</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">RequestOutput</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="n">RequestOutput</span><span class="p">]]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Generate output for the given prompts in the synchronous mode.</span>
<span class="sd"> Synchronous generation accepts either single prompt or batched prompts.</span>
<span class="sd"> Args:</span>
<span class="sd"> inputs (tensorrt_llm.inputs.data.PromptInputs, Sequence[tensorrt_llm.inputs.data.PromptInputs]): The prompt text or token ids.</span>
<span class="sd"> It can be single prompt or batched prompts.</span>
<span class="sd"> sampling_params (tensorrt_llm.sampling_params.SamplingParams, List[tensorrt_llm.sampling_params.SamplingParams], optional): The sampling params for the generation. Defaults to None.</span>
<span class="sd"> A default one will be used if not provided.</span>
<span class="sd"> use_tqdm (bool): Whether to use tqdm to display the progress bar. Defaults to True.</span>
<span class="sd"> lora_request (tensorrt_llm.executor.request.LoRARequest, Sequence[tensorrt_llm.executor.request.LoRARequest], optional):</span>
<span class="sd"> LoRA request to use for generation, if any. Defaults to None.</span>
<span class="sd"> prompt_adapter_request (tensorrt_llm.executor.request.PromptAdapterRequest, Sequence[tensorrt_llm.executor.request.PromptAdapterRequest], optional):</span>
<span class="sd"> Prompt Adapter request to use for generation, if any. Defaults to None.</span>
<span class="sd"> kv_cache_retention_config (tensorrt_llm.bindings.executor.KvCacheRetentionConfig, Sequence[tensorrt_llm.bindings.executor.KvCacheRetentionConfig], optional):</span>
<span class="sd"> Configuration for the request&#39;s retention in the KV Cache. Defaults to None.</span>
<span class="sd"> disaggregated_params (tensorrt_llm.disaggregated_params.DisaggregatedParams, Sequence[tensorrt_llm.disaggregated_params.DisaggregatedParams], optional):</span>
<span class="sd"> Disaggregated parameters. Defaults to None.</span>
<span class="sd"> scheduling_params (tensorrt_llm.scheduling_params.SchedulingParams, List[tensorrt_llm.scheduling_params.SchedulingParams], optional):</span>
<span class="sd"> Scheduling parameters. Defaults to None.</span>
<span class="sd"> Returns:</span>
<span class="sd"> Union[tensorrt_llm.llmapi.RequestOutput, List[tensorrt_llm.llmapi.RequestOutput]]: The output data of the completion request to the LLM.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">unbatched</span> <span class="o">=</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="nb">list</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">unbatched</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">inputs</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="nb">int</span><span class="p">):</span>
<span class="n">unbatched</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">if</span> <span class="n">unbatched</span><span class="p">:</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">inputs</span><span class="p">]</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">prompt_inputs</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">inputs</span><span class="p">]</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_item_at</span><span class="p">(</span><span class="n">maybe_batched</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">Any</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">Any</span><span class="p">]],</span> <span class="n">pos</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Any</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">maybe_batched</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="k">return</span> <span class="n">maybe_batched</span><span class="p">[</span><span class="n">pos</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">maybe_batched</span>
<span class="n">futures</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">request_inputs</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">inputs</span><span class="p">):</span>
<span class="n">future</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span>
<span class="n">request_inputs</span><span class="p">,</span>
<span class="n">sampling_params</span><span class="o">=</span><span class="n">_item_at</span><span class="p">(</span><span class="n">sampling_params</span><span class="p">,</span> <span class="n">i</span><span class="p">),</span>
<span class="n">lora_request</span><span class="o">=</span><span class="n">_item_at</span><span class="p">(</span><span class="n">lora_request</span><span class="p">,</span> <span class="n">i</span><span class="p">),</span>
<span class="n">prompt_adapter_request</span><span class="o">=</span><span class="n">_item_at</span><span class="p">(</span><span class="n">prompt_adapter_request</span><span class="p">,</span> <span class="n">i</span><span class="p">),</span>
<span class="n">kv_cache_retention_config</span><span class="o">=</span><span class="n">_item_at</span><span class="p">(</span><span class="n">kv_cache_retention_config</span><span class="p">,</span>
<span class="n">i</span><span class="p">),</span>
<span class="n">disaggregated_params</span><span class="o">=</span><span class="n">_item_at</span><span class="p">(</span><span class="n">disaggregated_params</span><span class="p">,</span> <span class="n">i</span><span class="p">),</span>
<span class="n">scheduling_params</span><span class="o">=</span><span class="n">_item_at</span><span class="p">(</span><span class="n">scheduling_params</span><span class="p">,</span> <span class="n">i</span><span class="p">),</span>
<span class="n">streaming</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">futures</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">future</span><span class="p">)</span>
<span class="k">for</span> <span class="n">future</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">futures</span><span class="p">,</span>
<span class="n">desc</span><span class="o">=</span><span class="s2">&quot;Processed requests&quot;</span><span class="p">,</span>
<span class="n">dynamic_ncols</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">disable</span><span class="o">=</span><span class="ow">not</span> <span class="n">use_tqdm</span><span class="p">):</span>
<span class="n">future</span><span class="o">.</span><span class="n">result</span><span class="p">()</span>
<span class="k">if</span> <span class="n">unbatched</span><span class="p">:</span>
<span class="n">futures</span> <span class="o">=</span> <span class="n">futures</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">return</span> <span class="n">futures</span>
<span class="nd">@nvtx_range_debug</span><span class="p">(</span><span class="s2">&quot;LLM.generate_async&quot;</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s2">&quot;green&quot;</span><span class="p">,</span> <span class="n">category</span><span class="o">=</span><span class="s2">&quot;LLM&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">generate_async</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">inputs</span><span class="p">:</span> <span class="n">PromptInputs</span><span class="p">,</span>
<span class="n">sampling_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SamplingParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">lora_request</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">LoRARequest</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_adapter_request</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">PromptAdapterRequest</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">streaming</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">kv_cache_retention_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">KvCacheRetentionConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">disaggregated_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">DisaggregatedParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">_postproc_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">PostprocParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">scheduling_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SchedulingParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">RequestOutput</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Generate output for the given prompt in the asynchronous mode.</span>
<span class="sd"> Asynchronous generation accepts single prompt only.</span>
<span class="sd"> Args:</span>
<span class="sd"> inputs (tensorrt_llm.inputs.data.PromptInputs): The prompt text or token ids; it must be single prompt.</span>
<span class="sd"> sampling_params (tensorrt_llm.sampling_params.SamplingParams, optional): The sampling params for the generation. Defaults to None.</span>
<span class="sd"> A default one will be used if not provided.</span>
<span class="sd"> lora_request (tensorrt_llm.executor.request.LoRARequest, optional): LoRA request to use for generation, if any. Defaults to None.</span>
<span class="sd"> prompt_adapter_request (tensorrt_llm.executor.request.PromptAdapterRequest, optional): Prompt Adapter request to use for generation, if any. Defaults to None.</span>
<span class="sd"> streaming (bool): Whether to use the streaming mode for the generation. Defaults to False.</span>
<span class="sd"> kv_cache_retention_config (tensorrt_llm.bindings.executor.KvCacheRetentionConfig, optional): Configuration for the request&#39;s retention in the KV Cache. Defaults to None.</span>
<span class="sd"> disaggregated_params (tensorrt_llm.disaggregated_params.DisaggregatedParams, optional): Disaggregated parameters. Defaults to None.</span>
<span class="sd"> scheduling_params (tensorrt_llm.scheduling_params.SchedulingParams, optional): Scheduling parameters. Defaults to None.</span>
<span class="sd"> Returns:</span>
<span class="sd"> tensorrt_llm.llmapi.RequestOutput: The output data of the completion request to the LLM.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># Check if the worker is shutting down</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">is_shutdown</span><span class="p">():</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;LLM is shutting down&quot;</span><span class="p">)</span>
<span class="n">sampling_params</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prepare_sampling_params</span><span class="p">(</span><span class="n">sampling_params</span><span class="p">)</span>
<span class="c1"># With pytorch backend, py_executor has logic to handle max_tokens of 1,</span>
<span class="c1"># so set to 1 to avoid allocating unnecessary KV cache blocks for single request</span>
<span class="c1"># TODO: Also support for trt backend</span>
<span class="n">is_ctx_only</span> <span class="o">=</span> <span class="n">disaggregated_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">disaggregated_params</span><span class="o">.</span><span class="n">request_type</span> <span class="o">==</span> <span class="s2">&quot;context_only&quot;</span>
<span class="n">is_gen_only</span> <span class="o">=</span> <span class="n">disaggregated_params</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">disaggregated_params</span><span class="o">.</span><span class="n">request_type</span> <span class="o">==</span> <span class="s2">&quot;generation_only&quot;</span>
<span class="k">if</span> <span class="n">is_ctx_only</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">_on_trt_backend</span><span class="p">:</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">max_tokens</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">prompt_inputs</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;prompt&quot;</span><span class="p">)</span> <span class="ow">and</span> <span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;prompt_token_ids&quot;</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span>
<span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;multi_modal_data&quot;</span><span class="p">)</span>
<span class="ow">or</span> <span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;multi_modal_embeddings&quot;</span><span class="p">))</span> <span class="ow">and</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="p">,</span> <span class="n">DefaultInputProcessor</span><span class="p">):</span>
<span class="c1"># VLMs need to process/tokenize the prompt in their own way</span>
<span class="n">prompt</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span><span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;prompt_token_ids&#39;</span><span class="p">])</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="n">TextPrompt</span><span class="p">(</span>
<span class="n">prompt</span><span class="o">=</span><span class="n">prompt</span><span class="p">,</span>
<span class="n">multi_modal_data</span><span class="o">=</span><span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;multi_modal_data&quot;</span><span class="p">),</span>
<span class="n">mm_processor_kwargs</span><span class="o">=</span><span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;mm_processor_kwargs&quot;</span><span class="p">))</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">add_special_tokens</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">debug</span><span class="p">(</span>
<span class="s2">&quot;Setting add_special_tokens to False because prompt_token_ids were provided to generate. VLMs will re-encode the prompt.&quot;</span>
<span class="p">)</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">add_special_tokens</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">query_token_ids</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">multimodal_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="s2">&quot;prompt_token_ids&quot;</span> <span class="ow">in</span> <span class="n">inputs</span><span class="p">:</span>
<span class="c1"># TODO: if specify prompt_token_ids, the mm hashing is not supported yet</span>
<span class="n">prompt_token_ids</span> <span class="o">=</span> <span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;prompt_token_ids&#39;</span><span class="p">]</span>
<span class="n">prompt</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">query_token_ids</span> <span class="o">=</span> <span class="n">inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;query_token_ids&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">elif</span> <span class="s2">&quot;prompt&quot;</span> <span class="ow">in</span> <span class="n">inputs</span><span class="p">:</span>
<span class="k">if</span> <span class="s1">&#39;multi_modal_data&#39;</span> <span class="ow">in</span> <span class="n">inputs</span><span class="p">:</span>
<span class="c1"># TODO: The current design uses a wrapper for existing input processor (input_processor_with_hash)</span>
<span class="c1"># to handle/add multimodal hashes, positions, and lengths. Now we only support image modality.</span>
<span class="c1"># In the future, we should refactor this to:</span>
<span class="c1"># 1. Extend support for more modalities and models</span>
<span class="c1"># 2. Decouple input processor into distinct phases (preprocessor (all preprocessing logics), vision model (fuse in model fwd), etc.</span>
<span class="n">input_processor_with_hash</span> <span class="o">=</span> <span class="n">create_input_processor_with_hash</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="p">)</span>
<span class="k">with</span> <span class="n">nvtx_range_debug</span><span class="p">(</span><span class="s2">&quot;input_processor_with_hash&quot;</span><span class="p">):</span>
<span class="n">prompt_token_ids</span><span class="p">,</span> <span class="n">extra_processed_inputs</span> <span class="o">=</span> <span class="n">input_processor_with_hash</span><span class="p">(</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="k">elif</span> <span class="s1">&#39;multi_modal_embeddings&#39;</span> <span class="ow">in</span> <span class="n">inputs</span><span class="p">:</span>
<span class="n">mm_embedding_info</span> <span class="o">=</span> <span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;multi_modal_embeddings&#39;</span><span class="p">]</span>
<span class="n">prompt_token_ids</span><span class="p">,</span> <span class="n">extra_processed_inputs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="o">.</span><span class="n">attach_multimodal_embeddings</span><span class="p">(</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">mm_embedding_info</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">with</span> <span class="n">nvtx_range_debug</span><span class="p">(</span><span class="s2">&quot;input_processor&quot;</span><span class="p">):</span>
<span class="n">prompt_token_ids</span><span class="p">,</span> <span class="n">extra_processed_inputs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="p">(</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="n">prompt</span> <span class="o">=</span> <span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;prompt&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">extra_processed_inputs</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">query_token_ids</span> <span class="o">=</span> <span class="n">extra_processed_inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;query_token_ids&#39;</span><span class="p">)</span>
<span class="c1"># Create unified MultimodalParams</span>
<span class="n">multimodal_params</span> <span class="o">=</span> <span class="n">MultimodalParams</span><span class="p">(</span>
<span class="n">multimodal_input</span><span class="o">=</span><span class="n">extra_processed_inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;multimodal_input&#39;</span><span class="p">),</span>
<span class="n">multimodal_data</span><span class="o">=</span><span class="n">extra_processed_inputs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;multimodal_data&#39;</span><span class="p">))</span>
<span class="c1"># Only pass it if it has content</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">multimodal_params</span><span class="o">.</span><span class="n">has_content</span><span class="p">():</span>
<span class="n">multimodal_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># Convert to shared tensor handle to reduce IPC overhead</span>
<span class="n">multimodal_params</span><span class="o">.</span><span class="n">to_handle</span><span class="p">(</span><span class="s2">&quot;multimodal_data&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;The inputs must be type str or list of int, but got </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_check_arguments</span><span class="p">(</span>
<span class="nb">len</span><span class="p">(</span><span class="n">prompt_token_ids</span><span class="p">),</span>
<span class="nb">len</span><span class="p">(</span><span class="n">query_token_ids</span><span class="p">)</span> <span class="k">if</span> <span class="n">query_token_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">sampling_params</span><span class="p">,</span>
<span class="n">is_gen_only</span><span class="o">=</span><span class="n">is_gen_only</span><span class="p">)</span>
<span class="k">if</span> <span class="n">_postproc_params</span><span class="p">:</span>
<span class="n">_postproc_params</span><span class="o">.</span><span class="n">postproc_args</span><span class="o">.</span><span class="n">num_prompt_tokens</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span>
<span class="n">prompt_token_ids</span><span class="p">)</span>
<span class="n">result</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">generate_async</span><span class="p">(</span>
<span class="n">prompt_token_ids</span><span class="p">,</span>
<span class="n">query_token_ids</span><span class="o">=</span><span class="n">query_token_ids</span><span class="p">,</span>
<span class="n">sampling_params</span><span class="o">=</span><span class="n">sampling_params</span><span class="p">,</span>
<span class="n">lora_request</span><span class="o">=</span><span class="n">lora_request</span><span class="p">,</span>
<span class="n">prompt_adapter_request</span><span class="o">=</span><span class="n">prompt_adapter_request</span><span class="p">,</span>
<span class="n">streaming</span><span class="o">=</span><span class="n">streaming</span><span class="p">,</span>
<span class="n">kv_cache_retention_config</span><span class="o">=</span><span class="n">kv_cache_retention_config</span><span class="p">,</span>
<span class="n">disaggregated_params</span><span class="o">=</span><span class="n">disaggregated_params</span><span class="p">,</span>
<span class="n">postproc_params</span><span class="o">=</span><span class="n">_postproc_params</span><span class="p">,</span>
<span class="n">multimodal_params</span><span class="o">=</span><span class="n">multimodal_params</span><span class="p">,</span>
<span class="n">scheduling_params</span><span class="o">=</span><span class="n">scheduling_params</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">RequestOutput</span><span class="o">.</span><span class="n">_from_generation_result</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">prompt</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
<span class="nd">@set_api_status</span><span class="p">(</span><span class="s2">&quot;beta&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_stats</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeout</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="nb">dict</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;Get iteration statistics from the runtime.</span>
<span class="sd"> To collect statistics, call this function after prompts have been submitted with LLM().generate().</span>
<span class="sd"> Args:</span>
<span class="sd"> timeout (float, optional): Max wait time in seconds when retrieving stats from queue. Defaults to 2.</span>
<span class="sd"> Returns:</span>
<span class="sd"> List[dict]: A list of runtime stats as dict.</span>
<span class="sd"> e.g., [&#39;{&quot;cpuMemUsage&quot;: ..., &quot;iter&quot;: 0, ...}&#39;, &#39;{&quot;cpuMemUsage&quot;: ..., &quot;iter&quot;: 1, ...}&#39;]</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">get_stats</span><span class="p">(</span><span class="n">timeout</span><span class="o">=</span><span class="n">timeout</span><span class="p">)</span>
<span class="nd">@set_api_status</span><span class="p">(</span><span class="s2">&quot;beta&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_stats_async</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeout</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">IterationResult</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;Get iteration statistics from the runtime.</span>
<span class="sd"> To collect statistics, you can call this function in an async coroutine or the /metrics endpoint (if you&#39;re using trtllm-serve)</span>
<span class="sd"> after prompts have been submitted.</span>
<span class="sd"> Args:</span>
<span class="sd"> timeout (float, optional): Max wait time in seconds when retrieving stats from queue. Defaults to 2.</span>
<span class="sd"> Returns:</span>
<span class="sd"> tensorrt_llm.executor.result.IterationResult: An async iterable object containing runtime stats.</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">aget_stats</span><span class="p">(</span><span class="n">timeout</span><span class="o">=</span><span class="n">timeout</span><span class="p">)</span>
<span class="nd">@set_api_status</span><span class="p">(</span><span class="s2">&quot;beta&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_kv_cache_events</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeout</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="nb">dict</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;Get iteration KV events from the runtime.</span>
<span class="sd"> KV events are used to track changes and operations within the KV Cache. Types of events:</span>
<span class="sd"> - KVCacheCreatedData: Indicates the creation of cache blocks.</span>
<span class="sd"> - KVCacheStoredData: Represents a sequence of stored blocks.</span>
<span class="sd"> - KVCacheRemovedData: Contains the hashes of blocks that are being removed from the cache.</span>
<span class="sd"> - KVCacheUpdatedData: Captures updates to existing cache blocks.</span>
<span class="sd"> To enable KV events:</span>
<span class="sd"> - set `event_buffer_max_size` to a positive integer in the `KvCacheConfig`.</span>
<span class="sd"> - set `enable_block_reuse` to True in the `KvCacheConfig`.</span>
<span class="sd"> Args:</span>
<span class="sd"> timeout (float, optional): Max wait time in seconds when retrieving events from queue. Defaults to 2.</span>
<span class="sd"> Returns:</span>
<span class="sd"> List[dict]: A list of runtime events as dict.</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">get_kv_events</span><span class="p">(</span><span class="n">timeout</span><span class="o">=</span><span class="n">timeout</span><span class="p">)</span>
<span class="nd">@set_api_status</span><span class="p">(</span><span class="s2">&quot;beta&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_kv_cache_events_async</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">timeout</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="mi">2</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">IterationResult</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;Get iteration KV events from the runtime.</span>
<span class="sd"> KV events are used to track changes and operations within the KV Cache. Types of events:</span>
<span class="sd"> - KVCacheCreatedData: Indicates the creation of cache blocks.</span>
<span class="sd"> - KVCacheStoredData: Represents a sequence of stored blocks.</span>
<span class="sd"> - KVCacheRemovedData: Contains the hashes of blocks that are being removed from the cache.</span>
<span class="sd"> - KVCacheUpdatedData: Captures updates to existing cache blocks.</span>
<span class="sd"> To enable KV events:</span>
<span class="sd"> - set `event_buffer_max_size` to a positive integer in the `KvCacheConfig`.</span>
<span class="sd"> - set `enable_block_reuse` to True in the `KvCacheConfig`.</span>
<span class="sd"> Args:</span>
<span class="sd"> timeout (float, optional): Max wait time in seconds when retrieving events from queue. . Defaults to 2.</span>
<span class="sd"> Returns:</span>
<span class="sd"> tensorrt_llm.executor.result.IterationResult: An async iterable object containing runtime events.</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">aget_kv_events</span><span class="p">(</span><span class="n">timeout</span><span class="o">=</span><span class="n">timeout</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_prepare_sampling_params</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">sampling_params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SamplingParams</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">SamplingParams</span><span class="p">:</span>
<span class="k">if</span> <span class="n">sampling_params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;tokenizer is required to initialize a default sampling_params, or you can explicitly specify a sampling_params&quot;</span>
<span class="p">)</span>
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">end_id</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="o">.</span><span class="n">eos_token_id</span><span class="p">,</span>
<span class="n">pad_id</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="o">.</span><span class="n">pad_token_id</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">sampling_params</span><span class="p">,</span> <span class="n">SamplingParams</span><span class="p">):</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">end_id</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s2">&quot;tokenizer is required to reset end_id if it is None, or you can explicitly specify the end_id for sampling_params&quot;</span>
<span class="p">)</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">_setup</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;The sampling_params must be type SamplingParams or None, but got </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">sampling_params</span><span class="p">)</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="c1"># auto enabled context and/or generation logits flags, as they are required by logprob computation for TRT backend.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">backend</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;pytorch&quot;</span><span class="p">,</span> <span class="s2">&quot;_autodeploy&quot;</span><span class="p">]:</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">prompt_logprobs</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">return_context_logits</span><span class="p">:</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">return_context_logits</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">_context_logits_auto_enabled</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">return_generation_logits</span><span class="p">:</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">return_generation_logits</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">_generation_logits_auto_enabled</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">_stream_interval</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">_stream_interval</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">,</span>
<span class="s2">&quot;stream_interval&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">sampling_params</span><span class="o">.</span><span class="n">return_perf_metrics</span> <span class="o">=</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">return_perf_metrics</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">return_perf_metrics</span>
<span class="k">return</span> <span class="n">sampling_params</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_check_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prompt_len</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">query_len</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">sampling_params</span><span class="p">:</span> <span class="n">SamplingParams</span><span class="p">,</span>
<span class="n">is_gen_only</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">backend</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">&quot;pytorch&quot;</span><span class="p">,</span> <span class="s2">&quot;_autodeploy&quot;</span><span class="p">]:</span>
<span class="c1"># TODO: remove these checks after PyTorch backend</span>
<span class="c1"># fully support TopK prompt and generation logprobs.</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">prompt_logprobs</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;`prompt_logprobs` in sampling_params is not supported in the PyTorch backend yet. Received `prompt_logprobs=</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">prompt_logprobs</span><span class="si">}</span><span class="s2">`. Please unset this field.&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span> <span class="ow">and</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;PyTorch backend currently only supports `logprobs=1`. Received `logprobs=</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span><span class="si">}</span><span class="s2">` (Top</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span><span class="si">}</span><span class="s2"> logprobs). Please set `logprobs=1` in `sampling_params` instead.&quot;</span>
<span class="p">)</span>
<span class="c1"># Check prompt length and query length against max_num_tokens to filter illegal requests.</span>
<span class="c1"># Skip check for gen-only requests</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">backend</span> <span class="o">==</span> <span class="s2">&quot;pytorch&quot;</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">enable_chunked_prefill</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">is_gen_only</span><span class="p">:</span>
<span class="n">max_num_tokens</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_num_tokens</span>
<span class="k">if</span> <span class="n">max_num_tokens</span> <span class="ow">and</span> <span class="n">prompt_len</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">+</span> <span class="n">query_len</span> <span class="o">&gt;</span> <span class="n">max_num_tokens</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;The sum of prompt length (</span><span class="si">{</span><span class="n">prompt_len</span><span class="o">/</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">cp_size</span><span class="si">}</span><span class="s2">), query length (</span><span class="si">{</span><span class="n">query_len</span><span class="si">}</span><span class="s2">) should not exceed &quot;</span>
<span class="sa">f</span><span class="s2">&quot;max_num_tokens (</span><span class="si">{</span><span class="n">max_num_tokens</span><span class="si">}</span><span class="s2">)&quot;</span><span class="p">)</span>
<span class="k">return</span>
<span class="n">build_config</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">build_config</span>
<span class="n">built_enging_cfg_file</span> <span class="o">=</span> <span class="n">Path</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">model</span><span class="p">)</span> <span class="o">/</span> <span class="s1">&#39;config.json&#39;</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">built_enging_cfg_file</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">built_enging_cfg</span> <span class="o">=</span> <span class="n">json</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">built_enging_cfg</span><span class="p">[</span><span class="s1">&#39;build_config&#39;</span><span class="p">][</span>
<span class="s1">&#39;max_seq_len&#39;</span><span class="p">]</span> <span class="k">if</span> <span class="s1">&#39;build_config&#39;</span> <span class="ow">in</span> <span class="n">built_enging_cfg</span> <span class="k">else</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_seq_len</span>
<span class="c1"># TODO: Remove this check and left the request verification to cpp runtime</span>
<span class="k">if</span> <span class="p">(</span><span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">enable_chunked_prefill</span><span class="p">)</span> <span class="ow">and</span> <span class="p">(</span>
<span class="n">prompt_len</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">cp_size</span> <span class="o">+</span> <span class="n">query_len</span> <span class="o">+</span>
<span class="p">(</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">max_tokens</span> <span class="ow">or</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&gt;</span> <span class="n">max_seq_len</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;The sum of prompt length (</span><span class="si">{</span><span class="n">prompt_len</span><span class="o">/</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">cp_size</span><span class="si">}</span><span class="s2">) and query length (</span><span class="si">{</span><span class="n">query_len</span><span class="si">}</span><span class="s2">) max_tokens (</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">max_tokens</span><span class="si">}</span><span class="s2">) should not exceed &quot;</span>
<span class="sa">f</span><span class="s2">&quot;max_seq_len (</span><span class="si">{</span><span class="n">max_seq_len</span><span class="si">}</span><span class="s2">)&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">use_beam_search</span> <span class="ow">and</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">best_of</span> <span class="o">&gt;</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span><span class="p">:</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">n</span> <span class="o">==</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">best_of</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;sampling_params.n (</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">n</span><span class="si">}</span><span class="s2">) cannot exceed max_beam_width (</span><span class="si">{</span><span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span><span class="si">}</span><span class="s2">) when use_beam_search is True&quot;</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;sampling_params.best_of (</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">best_of</span><span class="si">}</span><span class="s2">) cannot exceed max_beam_width (</span><span class="si">{</span><span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span><span class="si">}</span><span class="s2">) when use_beam_search is True&quot;</span>
<span class="p">)</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_batch_size</span>
<span class="k">if</span> <span class="n">max_batch_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_batch_size</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">use_beam_search</span> <span class="ow">and</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">best_of</span> <span class="o">&gt;</span> <span class="n">max_batch_size</span><span class="p">:</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">n</span> <span class="o">==</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">best_of</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;sampling_params.n (</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">n</span><span class="si">}</span><span class="s2">) cannot exceed max_batch_size (</span><span class="si">{</span><span class="n">max_batch_size</span><span class="si">}</span><span class="s2">) when use_beam_search is False&quot;</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;sampling_params.best_of (</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">best_of</span><span class="si">}</span><span class="s2">) cannot exceed max_batch_size (</span><span class="si">{</span><span class="n">max_batch_size</span><span class="si">}</span><span class="s2">) when use_beam_search is False&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">prompt_logprobs</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">build_config</span><span class="o">.</span><span class="n">gather_context_logits</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;`sampling_params&#39;s prompt_logprobs=</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">prompt_logprobs</span><span class="si">}</span><span class="s2">` requires `gather_context_logits=True` &quot;</span>
<span class="sa">f</span><span class="s2">&quot;in the `BuildConfig` when constructing the LLM. &quot;</span>
<span class="sa">f</span><span class="s2">&quot;Example: LLM(..., build_config=BuildConfig(gather_context_logits=True)).&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">gather_generation_logits</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;`sampling_params.logprobs=</span><span class="si">{</span><span class="n">sampling_params</span><span class="o">.</span><span class="n">logprobs</span><span class="si">}</span><span class="s2">` requires `gather_generation_logits=True` &quot;</span>
<span class="sa">f</span><span class="s2">&quot;to be passed explicitly to the `LLM()` constructor.&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_build_model</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">model_loader</span> <span class="o">=</span> <span class="n">CachedModelLoader</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">,</span>
<span class="n">mpi_session</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="p">,</span>
<span class="n">workspace</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_workspace</span><span class="p">,</span>
<span class="n">llm_build_stats</span><span class="o">=</span><span class="n">weakref</span><span class="o">.</span><span class="n">proxy</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">llm_build_stats</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">_hf_model_dir</span> <span class="o">=</span> <span class="n">model_loader</span><span class="p">()</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_on_trt_backend</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="k">return</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">,</span> <span class="n">TrtLlmArgs</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_try_load_tokenizer</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="n">TokenizerBase</span><span class="p">]:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">skip_tokenizer_init</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">tokenizer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">,</span> <span class="n">TokenizerBase</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">tokenizer</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">runtime_context</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">runtime_context</span><span class="o">.</span><span class="n">tokenizer</span>
<span class="c1"># TODO smor- need to refine what is the desired behavior if lora is enabled</span>
<span class="c1"># in terms of the tokenizer initialization process</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">,</span> <span class="s2">&quot;backend&quot;</span><span class="p">)</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">backend</span> <span class="ow">in</span> <span class="p">[</span>
<span class="s2">&quot;pytorch&quot;</span><span class="p">,</span> <span class="s2">&quot;_autodeploy&quot;</span>
<span class="p">]</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">lora_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">num_lora_dirs</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">lora_config</span><span class="o">.</span><span class="n">lora_dir</span><span class="p">)</span>
<span class="k">if</span> <span class="n">num_lora_dirs</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">tokenizer_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">lora_config</span><span class="o">.</span><span class="n">lora_dir</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">tokenizer</span> <span class="o">=</span> <span class="n">ModelLoader</span><span class="o">.</span><span class="n">load_hf_tokenizer</span><span class="p">(</span>
<span class="n">tokenizer_path</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">trust_remote_code</span><span class="p">,</span>
<span class="n">use_fast</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">tokenizer_mode</span> <span class="o">!=</span> <span class="s1">&#39;slow&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">tokenizer</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">tokenizer_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">model</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">tokenizer</span>
<span class="k">except</span> <span class="ne">Exception</span><span class="p">:</span>
<span class="n">tokenizer_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">model</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">tokenizer_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">model</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">tokenizer_path</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">model</span>
<span class="k">return</span> <span class="n">ModelLoader</span><span class="o">.</span><span class="n">load_hf_tokenizer</span><span class="p">(</span>
<span class="n">tokenizer_path</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">trust_remote_code</span><span class="p">,</span>
<span class="n">use_fast</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">tokenizer_mode</span> <span class="o">!=</span> <span class="s1">&#39;slow&#39;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">tokenizer</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="n">TokenizerBase</span><span class="p">]:</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;input_processor&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="p">,</span> <span class="s2">&quot;tokenizer&quot;</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="o">.</span><span class="n">tokenizer</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_tokenizer</span>
<span class="nd">@tokenizer</span><span class="o">.</span><span class="n">setter</span>
<span class="k">def</span><span class="w"> </span><span class="nf">tokenizer</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tokenizer</span><span class="p">:</span> <span class="n">TokenizerBase</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_tokenizer</span> <span class="o">=</span> <span class="n">tokenizer</span>
<span class="nd">@set_api_status</span><span class="p">(</span><span class="s2">&quot;beta&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">shutdown</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s2">&quot;_executor&quot;</span><span class="p">)</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="s1">&#39;mpi_session&#39;</span><span class="p">)</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="o">=</span> <span class="kc">None</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_shutdown_wrapper</span><span class="p">(</span><span class="n">self_ref</span><span class="p">):</span>
<span class="c1"># Retrieve the instance if it still exists</span>
<span class="n">instance</span> <span class="o">=</span> <span class="n">self_ref</span><span class="p">()</span>
<span class="k">if</span> <span class="n">instance</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">instance</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__enter__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__exit__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">exc_type</span><span class="p">,</span> <span class="n">exc_value</span><span class="p">,</span> <span class="n">traceback</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="k">del</span> <span class="n">exc_value</span><span class="p">,</span> <span class="n">traceback</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="k">return</span> <span class="kc">False</span> <span class="c1"># propagate exceptions</span>
<span class="k">def</span><span class="w"> </span><span class="nf">__getstate__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;LLM object can not be pickled.&quot;</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__del__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="nd">@append_docstring</span><span class="p">(</span><span class="n">TRT_LLM_DOCSTRING</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">_TrtLLM</span><span class="p">(</span><span class="n">BaseLLM</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;LLM class is the main class for running a LLM model using TensorRT-LLM backend.</span>
<span class="sd"> Parameters:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">model</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">],</span>
<span class="n">tokenizer</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">,</span> <span class="n">TokenizerBase</span><span class="p">,</span>
<span class="n">PreTrainedTokenizerBase</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_mode</span><span class="p">:</span> <span class="n">Literal</span><span class="p">[</span><span class="s1">&#39;auto&#39;</span><span class="p">,</span> <span class="s1">&#39;slow&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;auto&#39;</span><span class="p">,</span>
<span class="n">skip_tokenizer_init</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">tensor_parallel_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;auto&quot;</span><span class="p">,</span>
<span class="n">revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># TODO: deprecate backend in LLM kwargs</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">tokenizer</span><span class="p">,</span> <span class="n">tokenizer_mode</span><span class="p">,</span> <span class="n">skip_tokenizer_init</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">,</span> <span class="n">tensor_parallel_size</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span>
<span class="n">revision</span><span class="p">,</span> <span class="n">tokenizer_revision</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">workspace</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Path</span><span class="p">:</span>
<span class="k">return</span> <span class="n">Path</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_workspace</span><span class="o">.</span><span class="n">name</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_on_trt_backend</span> <span class="k">else</span> <span class="kc">None</span>
<span class="k">def</span><span class="w"> </span><span class="nf">save</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">engine_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Save the built engine to the given path.</span>
<span class="sd"> Args:</span>
<span class="sd"> engine_dir (str): The path to save the engine.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Save model to </span><span class="si">{</span><span class="n">engine_dir</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;The engine is not built yet.&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="o">.</span><span class="n">absolute</span><span class="p">()</span> <span class="o">==</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">abspath</span><span class="p">(</span><span class="n">engine_dir</span><span class="p">):</span>
<span class="k">return</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span> <span class="ow">or</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="o">.</span><span class="n">is_comm_session</span><span class="p">():</span>
<span class="n">shutil</span><span class="o">.</span><span class="n">copytree</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="p">,</span> <span class="n">engine_dir</span><span class="p">,</span> <span class="n">dirs_exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># NFS is fragile, so we copy files one by one</span>
<span class="n">target_engine_dir</span> <span class="o">=</span> <span class="n">Path</span><span class="p">(</span><span class="n">engine_dir</span><span class="p">)</span>
<span class="n">target_engine_dir</span><span class="o">.</span><span class="n">mkdir</span><span class="p">(</span><span class="n">parents</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">exist_ok</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># copy files one by one</span>
<span class="k">for</span> <span class="n">file</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="o">.</span><span class="n">iterdir</span><span class="p">():</span>
<span class="n">print_colored_debug</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Copying </span><span class="si">{</span><span class="n">file</span><span class="si">}</span><span class="s2"> to </span><span class="si">{</span><span class="n">target_engine_dir</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="n">file</span><span class="o">.</span><span class="n">name</span><span class="si">}</span><span class="se">\n</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="n">shutil</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">target_engine_dir</span> <span class="o">/</span> <span class="n">file</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_build_model</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">_build_model</span><span class="p">()</span>
<span class="c1"># update the model_dir to a local dir for the runtime, such as tokenizer loading.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span>
<span class="c1"># Tokenizer loading should be after calling model_loader(), since model_loader() may download the model from HF hub.</span>
<span class="c1"># It should also be before bindings ExecutorConfig, which may depend on tokenizer info.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_tokenizer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_try_load_tokenizer</span><span class="p">()</span>
<span class="c1"># Multimodal special handling:</span>
<span class="c1"># 1. Default load_tokenizer may fail because MM has different tokenizer configuration. Hence we initialize it inside input processor</span>
<span class="c1"># 2. May need to modify model weights for MM (e.g., resize vocab embedding). We must do such operation via input processor&#39;s __init__</span>
<span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span> <span class="o">=</span> <span class="n">create_input_processor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_hf_model_dir</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_tokenizer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="o">.</span><span class="n">tokenizer</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_batch_size</span>
<span class="n">max_num_tokens</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_num_tokens</span>
<span class="n">max_seq_len</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_seq_len</span>
<span class="n">build_config</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">build_config</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">max_batch_size</span> <span class="ow">or</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_batch_size</span>
<span class="n">max_num_tokens</span> <span class="o">=</span> <span class="n">max_num_tokens</span> <span class="ow">or</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_num_tokens</span>
<span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">max_seq_len</span> <span class="ow">or</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_seq_len</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span> <span class="o">=</span> <span class="n">tllm</span><span class="o">.</span><span class="n">ExecutorConfig</span><span class="p">(</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_beam_width</span><span class="p">,</span>
<span class="n">scheduler_config</span><span class="o">=</span><span class="n">PybindMirror</span><span class="o">.</span><span class="n">maybe_to_pybind</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">scheduler_config</span><span class="p">),</span>
<span class="n">batching_type</span><span class="o">=</span><span class="n">PybindMirror</span><span class="o">.</span><span class="n">maybe_to_pybind</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">batching_type</span><span class="p">)</span>
<span class="ow">or</span> <span class="n">tllm</span><span class="o">.</span><span class="n">BatchingType</span><span class="o">.</span><span class="n">INFLIGHT</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_num_tokens</span><span class="o">=</span><span class="n">max_num_tokens</span><span class="p">,</span>
<span class="n">gather_generation_logits</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">gather_generation_logits</span><span class="p">,</span>
<span class="n">fail_fast_on_attention_window_too_large</span><span class="o">=</span><span class="nb">getattr</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">,</span> <span class="s1">&#39;fail_fast_on_attention_window_too_large&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">))</span>
<span class="c1"># also set executor_config.max_seq_len in TRT workflow, to deduce default max_tokens</span>
<span class="k">if</span> <span class="n">max_seq_len</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">max_seq_len</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">engine_config</span> <span class="o">=</span> <span class="n">EngineConfig</span><span class="o">.</span><span class="n">from_json_file</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span> <span class="o">/</span>
<span class="s2">&quot;config.json&quot;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">engine_config</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">max_seq_len</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">kv_cache_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">PybindMirror</span><span class="o">.</span><span class="n">maybe_to_pybind</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">kv_cache_config</span><span class="p">)</span>
<span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">getenv</span><span class="p">(</span><span class="s2">&quot;FORCE_DETERMINISTIC&quot;</span><span class="p">,</span> <span class="s2">&quot;0&quot;</span><span class="p">)</span> <span class="o">==</span> <span class="s2">&quot;1&quot;</span><span class="p">:</span>
<span class="c1"># Disable KV cache reuse for deterministic mode</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">kv_cache_config</span><span class="o">.</span><span class="n">enable_block_reuse</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">kv_cache_config</span><span class="o">.</span><span class="n">enable_partial_reuse</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">peft_cache_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">peft_cache_config</span> <span class="o">=</span> <span class="n">PybindMirror</span><span class="o">.</span><span class="n">maybe_to_pybind</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">peft_cache_config</span><span class="p">)</span>
<span class="n">lora_config</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span><span class="p">:</span>
<span class="n">engine_config</span> <span class="o">=</span> <span class="n">EngineConfig</span><span class="o">.</span><span class="n">from_json_file</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span> <span class="o">/</span>
<span class="s2">&quot;config.json&quot;</span><span class="p">)</span>
<span class="n">lora_config</span> <span class="o">=</span> <span class="n">engine_config</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">lora_config</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">lora_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span>
<span class="s2">&quot;Overriding lora_config from engine with lora_config from LLM args&quot;</span>
<span class="p">)</span>
<span class="n">lora_config</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">lora_config</span>
<span class="n">max_lora_rank</span> <span class="o">=</span> <span class="n">lora_config</span><span class="o">.</span><span class="n">max_lora_rank</span>
<span class="n">num_lora_modules</span> <span class="o">=</span> <span class="n">engine_config</span><span class="o">.</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">*</span> \
<span class="nb">len</span><span class="p">(</span><span class="n">lora_config</span><span class="o">.</span><span class="n">lora_target_modules</span> <span class="o">+</span> <span class="n">lora_config</span><span class="o">.</span><span class="n">missing_qkv_modules</span><span class="p">)</span>
<span class="n">peft_cache_config_model</span> <span class="o">=</span> <span class="n">PeftCacheConfig</span><span class="o">.</span><span class="n">from_pybind</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">peft_cache_config</span>
<span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">peft_cache_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">PeftCacheConfig</span><span class="p">(</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">lora_config</span><span class="o">.</span><span class="n">max_loras</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">peft_cache_config_model</span><span class="o">.</span><span class="n">num_device_module_layer</span> <span class="o">=</span> \
<span class="n">max_lora_rank</span> <span class="o">*</span> <span class="n">num_lora_modules</span> <span class="o">*</span> <span class="n">lora_config</span><span class="o">.</span><span class="n">max_loras</span>
<span class="k">if</span> <span class="n">lora_config</span><span class="o">.</span><span class="n">max_cpu_loras</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">peft_cache_config_model</span><span class="o">.</span><span class="n">num_host_module_layer</span> <span class="o">=</span> \
<span class="n">max_lora_rank</span> <span class="o">*</span> <span class="n">num_lora_modules</span> <span class="o">*</span> <span class="n">lora_config</span><span class="o">.</span><span class="n">max_cpu_loras</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">peft_cache_config</span> <span class="o">=</span> <span class="n">peft_cache_config_model</span><span class="o">.</span><span class="n">_to_pybind</span><span class="p">(</span>
<span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">decoding_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">decoding_config</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">decoding_config</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">guided_decoding_backend</span> <span class="o">==</span> <span class="s1">&#39;xgrammar&#39;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">guided_decoding_config</span> <span class="o">=</span> <span class="n">tllm</span><span class="o">.</span><span class="n">GuidedDecodingConfig</span><span class="p">(</span>
<span class="n">backend</span><span class="o">=</span><span class="n">tllm</span><span class="o">.</span><span class="n">GuidedDecodingConfig</span><span class="o">.</span><span class="n">GuidedDecodingBackend</span><span class="o">.</span>
<span class="n">XGRAMMAR</span><span class="p">,</span>
<span class="o">**</span><span class="n">_xgrammar_tokenizer_info</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">))</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">guided_decoding_backend</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Unsupported guided decoding backend </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">guided_decoding_backend</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">normalize_log_probs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">normalize_log_probs</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">enable_chunked_context</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">enable_chunked_prefill</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">max_beam_width</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">max_beam_width</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">extended_runtime_perf_knob_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">extended_runtime_perf_knob_config</span> <span class="o">=</span> <span class="n">PybindMirror</span><span class="o">.</span><span class="n">maybe_to_pybind</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">extended_runtime_perf_knob_config</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">cache_transceiver_config</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">cache_transceiver_config</span> <span class="o">=</span> <span class="n">PybindMirror</span><span class="o">.</span><span class="n">maybe_to_pybind</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">cache_transceiver_config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="o">.</span><span class="n">llm_parallel_config</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span>
<span class="n">return_logits</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">gather_generation_logits</span>
<span class="ow">or</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">build_config</span>
<span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">gather_context_logits</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor_cls</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="p">,</span>
<span class="n">executor_config</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_executor_config</span><span class="p">,</span>
<span class="n">batched_logits_processor</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">batched_logits_processor</span><span class="p">,</span>
<span class="n">model_world_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">mpi_session</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="p">,</span>
<span class="n">reuse_mpi_comm</span><span class="o">=</span><span class="n">external_mpi_comm_available</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="p">),</span>
<span class="n">return_logits</span><span class="o">=</span><span class="n">return_logits</span><span class="p">,</span>
<span class="n">postproc_worker_config</span><span class="o">=</span><span class="n">PostprocWorkerConfig</span><span class="p">(</span>
<span class="n">num_postprocess_workers</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">num_postprocess_workers</span><span class="p">,</span>
<span class="n">postprocess_tokenizer_dir</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">postprocess_tokenizer_dir</span><span class="p">,</span>
<span class="p">),</span>
<span class="n">is_llm_executor</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">lora_config</span><span class="o">=</span><span class="n">lora_config</span><span class="p">)</span>
<span class="nd">@append_docstring</span><span class="p">(</span><span class="n">TORCH_LLM_DOCSTRING</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">_TorchLLM</span><span class="p">(</span><span class="n">BaseLLM</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;LLM class is the main class for running a LLM model using PyTorch backend.</span>
<span class="sd"> Parameters:</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">model</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">],</span>
<span class="n">tokenizer</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">,</span> <span class="n">TokenizerBase</span><span class="p">,</span>
<span class="n">PreTrainedTokenizerBase</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_mode</span><span class="p">:</span> <span class="n">Literal</span><span class="p">[</span><span class="s1">&#39;auto&#39;</span><span class="p">,</span> <span class="s1">&#39;slow&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;auto&#39;</span><span class="p">,</span>
<span class="n">skip_tokenizer_init</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">tensor_parallel_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;auto&quot;</span><span class="p">,</span>
<span class="n">revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># TODO: deprecate backend in LLM kwargs</span>
<span class="n">backend</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">&quot;backend&quot;</span><span class="p">,</span> <span class="s2">&quot;pytorch&quot;</span><span class="p">)</span>
<span class="c1"># Validate that users don&#39;t pass TrtLlmArgs-specific arguments</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_validate_args_for_torch_backend</span><span class="p">(</span><span class="n">kwargs</span><span class="p">)</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">model</span><span class="p">,</span>
<span class="n">tokenizer</span><span class="p">,</span>
<span class="n">tokenizer_mode</span><span class="p">,</span>
<span class="n">skip_tokenizer_init</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">,</span>
<span class="n">tensor_parallel_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">,</span>
<span class="n">revision</span><span class="p">,</span>
<span class="n">tokenizer_revision</span><span class="p">,</span>
<span class="n">backend</span><span class="o">=</span><span class="n">backend</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_build_model</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">_build_model</span><span class="p">()</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="c1"># Tokenizer loading should be after calling model_loader(), since model_loader() may download the model from HF hub.</span>
<span class="c1"># It should also be before bindings ExecutorConfig, which may depend on tokenizer info.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_tokenizer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_try_load_tokenizer</span><span class="p">()</span>
<span class="c1"># Multimodal special handling:</span>
<span class="c1"># 1. Default load_tokenizer may fail because MM has different tokenizer configuration. Hence we initialize it inside input processor</span>
<span class="c1"># 2. May need to modify model weights for MM (e.g., resize vocab embedding). We must do such operation via input processor&#39;s __init__</span>
<span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span> <span class="o">=</span> <span class="n">create_input_processor</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_hf_model_dir</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_tokenizer</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_processor</span><span class="o">.</span><span class="n">tokenizer</span>
<span class="c1"># TODO: revisit gather_context_logits</span>
<span class="n">return_logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">gather_generation_logits</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_executor</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_executor_cls</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_engine_dir</span><span class="p">,</span>
<span class="n">executor_config</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">batched_logits_processor</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">batched_logits_processor</span><span class="p">,</span>
<span class="n">model_world_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">mpi_session</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">mpi_session</span><span class="p">,</span>
<span class="n">reuse_mpi_comm</span><span class="o">=</span><span class="n">external_mpi_comm_available</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">parallel_config</span><span class="o">.</span><span class="n">world_size</span><span class="p">),</span>
<span class="n">return_logits</span><span class="o">=</span><span class="n">return_logits</span><span class="p">,</span>
<span class="n">postproc_worker_config</span><span class="o">=</span><span class="n">PostprocWorkerConfig</span><span class="p">(</span>
<span class="n">num_postprocess_workers</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">num_postprocess_workers</span><span class="p">,</span>
<span class="n">postprocess_tokenizer_dir</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">postprocess_tokenizer_dir</span><span class="p">,</span>
<span class="p">),</span>
<span class="n">is_llm_executor</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">lora_config</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="o">.</span><span class="n">lora_config</span><span class="p">,</span>
<span class="c1"># Autodeploy does not support kv_connector_config</span>
<span class="n">kv_connector_config</span><span class="o">=</span><span class="nb">getattr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">,</span> <span class="s2">&quot;kv_connector_config&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">),</span>
<span class="n">hf_model_dir</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_hf_model_dir</span><span class="p">,</span>
<span class="n">tokenizer</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">,</span>
<span class="n">llm_args</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">args</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_validate_args_for_torch_backend</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">kwargs</span><span class="p">:</span> <span class="nb">dict</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Validate that users don&#39;t pass TrtLlmArgs-specific arguments when using PyTorch backend.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">trtllm_fields</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">TrtLlmArgs</span><span class="o">.</span><span class="n">model_fields</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="n">torchllm_fields</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">TorchLlmArgs</span><span class="o">.</span><span class="n">model_fields</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="n">trtllm_specific_fields</span> <span class="o">=</span> <span class="n">trtllm_fields</span> <span class="o">-</span> <span class="n">torchllm_fields</span>
<span class="c1"># Check if any TrtLlmArgs-specific arguments are passed</span>
<span class="n">trtllm_specific_args</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">trtllm_specific_fields</span><span class="p">:</span>
<span class="n">trtllm_specific_args</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">key</span><span class="p">)</span>
<span class="k">if</span> <span class="n">trtllm_specific_args</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;The following arguments are specific to TensorRT backend and cannot be used with PyTorch backend: </span><span class="si">{</span><span class="n">trtllm_specific_args</span><span class="si">}</span><span class="s2">.</span><span class="se">\n</span><span class="s2">&quot;</span>
<span class="sa">f</span><span class="s2">&quot;Please use &#39;from tensorrt_llm._tensorrt_engine import LLM&#39; instead to use the TensorRT backend.&quot;</span>
<span class="p">)</span>
<div class="viewcode-block" id="LLM">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.llmapi.LLM">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">LLM</span><span class="p">(</span><span class="n">_TorchLLM</span><span class="p">):</span>
<div class="viewcode-block" id="LLM.__init__">
<a class="viewcode-back" href="../../../llm-api/reference.html#tensorrt_llm.llmapi.LLM.__init__">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">model</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">],</span>
<span class="n">tokenizer</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Path</span><span class="p">,</span> <span class="n">TokenizerBase</span><span class="p">,</span>
<span class="n">PreTrainedTokenizerBase</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_mode</span><span class="p">:</span> <span class="n">Literal</span><span class="p">[</span><span class="s1">&#39;auto&#39;</span><span class="p">,</span> <span class="s1">&#39;slow&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;auto&#39;</span><span class="p">,</span>
<span class="n">skip_tokenizer_init</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">tensor_parallel_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;auto&quot;</span><span class="p">,</span>
<span class="n">revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tokenizer_revision</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">:</span> <span class="n">Any</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">tokenizer</span><span class="p">,</span> <span class="n">tokenizer_mode</span><span class="p">,</span> <span class="n">skip_tokenizer_init</span><span class="p">,</span>
<span class="n">trust_remote_code</span><span class="p">,</span> <span class="n">tensor_parallel_size</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span>
<span class="n">revision</span><span class="p">,</span> <span class="n">tokenizer_revision</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
</div>
<span class="c1"># sphinx will ignore the LLM&#39;s docstring if it is not explicitly set</span>
<span class="n">LLM</span><span class="o">.</span><span class="vm">__doc__</span> <span class="o">=</span> \
<span class="sa">f</span><span class="s2">&quot;&quot;&quot;LLM class is the main class for running a LLM model.</span>
<span class="s2"> For more details about the arguments, please refer to :class:`TorchLlmArgs`.</span>
<span class="s2"> Parameters:</span>
<span class="s2">&quot;&quot;&quot;</span> <span class="o">+</span> <span class="n">TORCH_LLM_DOCSTRING</span>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on September 02, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/e81c50d">e81c50d</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>