TensorRT-LLMs/_modules/tensorrt_llm/models/eagle/model.html
2025-09-04 03:19:11 +00:00

1989 lines
208 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.models.eagle.model &#8212; TensorRT-LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
<link rel="stylesheet" type="text/css" href="../../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../../_static/custom.css?v=95073da6" />
<!-- So that users can add custom icons -->
<script src="../../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/models/eagle/model';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.1.0rc3';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../../genindex.html" />
<link rel="search" title="Search" href="../../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.1.0rc3" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../../index.html">
<img src="../../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../../index.html">
<img src="../../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
<img src="../../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
<p class="title logo__title">TensorRT-LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../release-notes.html">Release Notes</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-llama4-scout-on-trtllm.html">Quick Start Recipe for Llama4 Scout 17B on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-deepseek-r1-on-trtllm.html">Quick Start Recipe for DeepSeek R1 on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-llama3.3-70b-on-trtllm.html">Quick Start Recipe for Llama3.3 70B on TensorRT-LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../deployment-guide/quick-start-recipe-for-gpt-oss-on-trtllm.html">Quick Start Recipe for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../examples/customization.html">LLM Common Customizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/lora.html">Run gpt-2b + LoRA using Executor / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/kv-cache-management.html">KV Cache Management: Pools, Blocks, and Events</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../advanced/disaggregated-service.html">Disaggregated-Service (Prototype)</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../performance/performance-tuning-guide/index.html">Performance Tuning Guide</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../../performance/performance-tuning-guide/benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../performance/performance-tuning-guide/useful-build-time-flags.html">Useful Build-Time Flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../performance/performance-tuning-guide/tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../performance/performance-tuning-guide/deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../performance/performance-tuning-guide/fp8-quantization.html">FP8 Quantization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../../performance/performance-tuning-guide/useful-runtime-flags.html">Useful Runtime Options</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../reference/dev-containers.html">Using Dev Containers</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT-LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT-LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRTLLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT-LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT-LLM</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.models.eagle.model</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.models.eagle.model</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">collections</span><span class="w"> </span><span class="kn">import</span> <span class="n">OrderedDict</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tensorrt</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">trt</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tqdm</span><span class="w"> </span><span class="kn">import</span> <span class="n">tqdm</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.models.generation_mixin</span><span class="w"> </span><span class="kn">import</span> <span class="n">GenerationMixin</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.models.llama.model</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLaMAForCausalLM</span><span class="p">,</span> <span class="n">LLaMAModel</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.models.model_weights_loader</span><span class="w"> </span><span class="kn">import</span> <span class="n">ModelWeightsLoader</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..._common</span><span class="w"> </span><span class="kn">import</span> <span class="n">default_net</span><span class="p">,</span> <span class="n">default_trtnet</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..._utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">pad_vocab_size</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">...bindings</span><span class="w"> </span><span class="kn">import</span> <span class="n">KVCacheType</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">...functional</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">_create_tensor</span><span class="p">,</span> <span class="n">cast</span><span class="p">,</span> <span class="n">concat</span><span class="p">,</span>
<span class="n">gather_last_token_logits</span><span class="p">,</span> <span class="n">index_select</span><span class="p">,</span> <span class="n">shape</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">...layers</span><span class="w"> </span><span class="kn">import</span> <span class="n">AttentionParams</span><span class="p">,</span> <span class="n">ColumnLinear</span><span class="p">,</span> <span class="n">SpecDecodingParams</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">...module</span><span class="w"> </span><span class="kn">import</span> <span class="n">Module</span><span class="p">,</span> <span class="n">ModuleList</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">...plugin</span><span class="w"> </span><span class="kn">import</span> <span class="n">TRT_LLM_PLUGIN_NAMESPACE</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..modeling_utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantConfig</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.config</span><span class="w"> </span><span class="kn">import</span> <span class="n">EagleConfig</span>
<span class="k">class</span><span class="w"> </span><span class="nc">TreeParams</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">paths</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">paths</span> <span class="o">=</span> <span class="n">paths</span> <span class="c1"># on GPU</span>
<span class="k">def</span><span class="w"> </span><span class="nf">eagle_sample_and_accept_draft_plugin</span><span class="p">(</span><span class="n">lm_logits</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">draft_tokens</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">draft_lens</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">eagle_temperature</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rand_data_validation</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">posterior_alpha</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">posterior_threshold</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tree_params</span><span class="p">:</span> <span class="n">TreeParams</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">greedy_sampling</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">use_dynamic_tree</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Takes input logits and samples golden token + predictions from draft tokens.</span>
<span class="sd"> Runs acceptance algorithm to accept draft tokens.</span>
<span class="sd"> When greedy_sampling is True, all decoding is done using Top1 and token equality is used</span>
<span class="sd"> for acceptance. Otherwise, typical acceptance and multinomial samplings are used.</span>
<span class="sd"> Visit tests/model/eagle/test_sample_accept_draft_tokens.py for input/output examples.</span>
<span class="sd"> Parameters:</span>
<span class="sd"> lm_logits : Tensor</span>
<span class="sd"> [num_tokens, vocab_size]</span>
<span class="sd"> Logits produced by the base model.</span>
<span class="sd"> draft_tokens : Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> Input draft tokens. Only the first draft_lens[bi] tokens are relevant for bi&#39;th row.</span>
<span class="sd"> draft_lens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Lengths of the draft_tokens. 0 for context request. Actual draft length for generation requests.</span>
<span class="sd"> eagle_temperature : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Temperature of the decoding.</span>
<span class="sd"> rand_data_validation : Tensor</span>
<span class="sd"> [batch_size, max_decoding_tokens]</span>
<span class="sd"> Random data for multinomial sampling.</span>
<span class="sd"> posterior_alpha : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Delta in typical acceptance in https://arxiv.org/pdf/2401.10774.</span>
<span class="sd"> posterior_threshold : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Minimum probability threshold.</span>
<span class="sd"> Epsilon in typical acceptance in https://arxiv.org/pdf/2401.10774.</span>
<span class="sd"> tree_params : TreeParams</span>
<span class="sd"> Tree params of the input draft tokens.</span>
<span class="sd"> greedy_sampling : Tensor</span>
<span class="sd"> Whether to do greedy or non-greedy sampling.</span>
<span class="sd"> use_dynamic_tree: Tensor</span>
<span class="sd"> Whether to use dynamic tree (i.e., Eagle-2)</span>
<span class="sd"> Return:</span>
<span class="sd"> accepted_tokens : Tensor</span>
<span class="sd"> [batch_size, max_path_len]</span>
<span class="sd"> Accepted token ids. Only the first num_accepted_tokens[bi] tokens are relevant for bi&#39;th row,</span>
<span class="sd"> num_accepted_tokens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Number of accepted tokens per request. Each entry is &gt;= 1.</span>
<span class="sd"> accepted_paths : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Indices of the accepted path per request of the input paths in tree_params.paths.</span>
<span class="sd"> next_draft_tokens : Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> Empty tensor used to allocate space for the next draft tokens.</span>
<span class="sd"> next_draft_lens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Empty tensor used to allocate space for lens of the next draft tokens.</span>
<span class="sd"> next_draft_paths : Tensor</span>
<span class="sd"> [batch_size, max_decoding_len, max_path_len]</span>
<span class="sd"> For EAGLE-1 just a copy of input path.</span>
<span class="sd"> hidden_size_batch_level_starts : Tensor</span>
<span class="sd"> [max_draft_path_len * batch_size + 1]</span>
<span class="sd"> Empty tensor used to allocate space for eagle_prepare_drafter_inputs_plugin.</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">plg_creator</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">get_plugin_registry</span><span class="p">()</span><span class="o">.</span><span class="n">get_plugin_creator</span><span class="p">(</span>
<span class="s1">&#39;EagleSampleAndAcceptDraftTokens&#39;</span><span class="p">,</span> <span class="s1">&#39;1&#39;</span><span class="p">,</span> <span class="n">TRT_LLM_PLUGIN_NAMESPACE</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">plg_creator</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">pf_type</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span><span class="s2">&quot;type_id&quot;</span><span class="p">,</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="nb">int</span><span class="p">(</span><span class="n">lm_logits</span><span class="o">.</span><span class="n">dtype</span><span class="p">)],</span> <span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">pfc</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldCollection</span><span class="p">([</span><span class="n">pf_type</span><span class="p">])</span>
<span class="n">plugin</span> <span class="o">=</span> <span class="n">plg_creator</span><span class="o">.</span><span class="n">create_plugin</span><span class="p">(</span><span class="s2">&quot;eagle_sample_and_accept_draft_plugin&quot;</span><span class="p">,</span>
<span class="n">pfc</span><span class="p">)</span>
<span class="n">plug_inputs</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">lm_logits</span><span class="p">,</span> <span class="n">draft_tokens</span><span class="p">,</span> <span class="n">draft_lens</span><span class="p">,</span> <span class="n">eagle_temperature</span><span class="p">,</span>
<span class="n">rand_data_validation</span><span class="p">,</span> <span class="n">posterior_alpha</span><span class="p">,</span> <span class="n">posterior_threshold</span><span class="p">,</span>
<span class="n">tree_params</span><span class="o">.</span><span class="n">paths</span><span class="p">,</span> <span class="n">greedy_sampling</span><span class="p">,</span> <span class="n">use_dynamic_tree</span>
<span class="p">]</span>
<span class="n">plug_inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span><span class="o">.</span><span class="n">trt_tensor</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">plug_inputs</span><span class="p">]</span>
<span class="n">layer</span> <span class="o">=</span> <span class="n">default_trtnet</span><span class="p">()</span><span class="o">.</span><span class="n">add_plugin_v2</span><span class="p">(</span><span class="n">plug_inputs</span><span class="p">,</span> <span class="n">plugin</span><span class="p">)</span>
<span class="n">accepted_tokens</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">num_accepted_tokens</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">accepted_paths</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">next_draft_tokens</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">3</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">next_draft_lens</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">4</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">next_draft_paths</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">hidden_size_batch_level_starts</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">6</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">tuple</span><span class="p">([</span>
<span class="n">accepted_tokens</span><span class="p">,</span> <span class="n">num_accepted_tokens</span><span class="p">,</span> <span class="n">accepted_paths</span><span class="p">,</span> <span class="n">next_draft_tokens</span><span class="p">,</span>
<span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">hidden_size_batch_level_starts</span>
<span class="p">])</span>
<span class="k">def</span><span class="w"> </span><span class="nf">eagle_draft_decoder_plugin</span><span class="p">(</span>
<span class="n">layer_idx</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">num_eagle_layers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">top_k_sampling</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="n">logits</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">num_last_token_indices</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">input_paths</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">use_dynamic_tree</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">dynamic_tree_max_topK</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_draft_token_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">input_draft_lens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_prev_scores</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">input_current_expand_indices</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_all_layers_scores</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_all_layers_draft_token_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_all_layers_draft_token_ids_predecessor</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Parameters:</span>
<span class="sd"> layer_idx : int</span>
<span class="sd"> The index of the EagleNet.</span>
<span class="sd"> num_eagle_layers: int</span>
<span class="sd"> The total number of eagle layers.</span>
<span class="sd"> top_k_sampling: bool</span>
<span class="sd"> Whether to use top K sampling. Otherwise, use multinomial sampling.</span>
<span class="sd"> logits : Tensor</span>
<span class="sd"> [num_logits, vocab_size]</span>
<span class="sd"> Input logits.</span>
<span class="sd"> num_last_token_indices : Tensor</span>
<span class="sd"> [1]</span>
<span class="sd"> Number of valid logits in logits.</span>
<span class="sd"> input_paths: Tensor</span>
<span class="sd"> [batch_size, max_decoding_tokens, max_path_len]</span>
<span class="sd"> Input paths</span>
<span class="sd"> use_dynamic_tree: Tensor</span>
<span class="sd"> [1]</span>
<span class="sd"> Whether use dynamic tree (i.e., Eagle-2)</span>
<span class="sd"> dynamic_tree_max_topK: Tensor</span>
<span class="sd"> [1]</span>
<span class="sd"> Number of draft tokens expand in Eagle-2.</span>
<span class="sd"> input_draft_token_ids: Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> Draft tokens generated by previous EagleNets.</span>
<span class="sd"> input_draft_lens: Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Number of draft tokens for each request.</span>
<span class="sd"> input_prev_scores: Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> Last layer&#39;s scores</span>
<span class="sd"> input_current_expand_indices: Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> The indices of the nodes that expand in this layer.</span>
<span class="sd"> The index is related to the final output tree, which has max_decoding_draft_tokens draft tokens.</span>
<span class="sd"> input_all_layers_scores: Tensor</span>
<span class="sd"> [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]</span>
<span class="sd"> For Eagle-2, record scores from all EagleNets</span>
<span class="sd"> input_all_layers_draft_token_ids: Tensor</span>
<span class="sd"> [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]</span>
<span class="sd"> For Eagle-2, record all draft tokens from all EagleNets</span>
<span class="sd"> input_all_layers_draft_token_ids_predecessor: Tensor</span>
<span class="sd"> [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]</span>
<span class="sd"> For Eagle-2, record all draft tokens&#39; predecessor</span>
<span class="sd"> Return:</span>
<span class="sd"> output_draft_token_ids: Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> Draft tokens generated by this EagleNets, also include the previous draft tokens.</span>
<span class="sd"> output_draft_draft_lens: Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Number of draft tokens for each request.</span>
<span class="sd"> output_paths: Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens, max_path_len]</span>
<span class="sd"> The latest path.</span>
<span class="sd"> output_current_scores: Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> This layer&#39;s scores, which will be used in next layer.</span>
<span class="sd"> output_next_expand_indices:</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> The indices of the nodes that expand in next layer.</span>
<span class="sd"> The index is related to the final output tree, which has max_decoding_draft_tokens draft tokens.</span>
<span class="sd"> output_all_layers_scores:</span>
<span class="sd"> [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]</span>
<span class="sd"> For Eagle-2, record scores from all EagleNets</span>
<span class="sd"> output_all_layers_draft_token_ids: Tensor</span>
<span class="sd"> [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]</span>
<span class="sd"> For Eagle-2, record all draft tokens from all EagleNets</span>
<span class="sd"> output_all_layers_draft_token_ids_predecessor: Tensor</span>
<span class="sd"> [batch_size, num_eagle_layers, max_decoding_draft_tokens x max_decoding_draft_tokens]</span>
<span class="sd"> For Eagle-2, record all draft tokens&#39; predecessor</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">plg_creator</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">get_plugin_registry</span><span class="p">()</span><span class="o">.</span><span class="n">get_plugin_creator</span><span class="p">(</span>
<span class="s1">&#39;EagleDecodeDraftTokens&#39;</span><span class="p">,</span> <span class="s1">&#39;1&#39;</span><span class="p">,</span> <span class="n">TRT_LLM_PLUGIN_NAMESPACE</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">plg_creator</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">pf_type</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span><span class="s2">&quot;type_id&quot;</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="nb">int</span><span class="p">(</span><span class="n">logits</span><span class="o">.</span><span class="n">dtype</span><span class="p">)],</span>
<span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">layer_idx_t</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span><span class="s2">&quot;layer_idx&quot;</span><span class="p">,</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">layer_idx</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">num_eagle_layers_t</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span>
<span class="s2">&quot;num_eagle_layers&quot;</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">num_eagle_layers</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">top_k_sampling_t</span> <span class="o">=</span> <span class="mi">1</span> <span class="k">if</span> <span class="n">top_k_sampling</span> <span class="k">else</span> <span class="mi">0</span>
<span class="n">top_k_sampling_t</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span>
<span class="s2">&quot;top_k_sampling&quot;</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">top_k_sampling_t</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">pfc</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldCollection</span><span class="p">(</span>
<span class="p">[</span><span class="n">pf_type</span><span class="p">,</span> <span class="n">layer_idx_t</span><span class="p">,</span> <span class="n">num_eagle_layers_t</span><span class="p">,</span> <span class="n">top_k_sampling_t</span><span class="p">])</span>
<span class="n">plugin</span> <span class="o">=</span> <span class="n">plg_creator</span><span class="o">.</span><span class="n">create_plugin</span><span class="p">(</span><span class="s2">&quot;eagle_draft_decoder_plugin&quot;</span><span class="p">,</span> <span class="n">pfc</span><span class="p">)</span>
<span class="n">plug_inputs</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">logits</span><span class="p">,</span> <span class="n">input_paths</span><span class="p">,</span> <span class="n">num_last_token_indices</span><span class="p">,</span> <span class="n">use_dynamic_tree</span><span class="p">,</span>
<span class="n">dynamic_tree_max_topK</span><span class="p">,</span> <span class="n">input_draft_token_ids</span><span class="p">,</span> <span class="n">input_draft_lens</span><span class="p">,</span>
<span class="n">input_prev_scores</span><span class="p">,</span> <span class="n">input_current_expand_indices</span><span class="p">,</span>
<span class="n">input_all_layers_scores</span><span class="p">,</span> <span class="n">input_all_layers_draft_token_ids</span><span class="p">,</span>
<span class="n">input_all_layers_draft_token_ids_predecessor</span>
<span class="p">]</span>
<span class="n">plug_inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span><span class="o">.</span><span class="n">trt_tensor</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">plug_inputs</span><span class="p">]</span>
<span class="n">layer</span> <span class="o">=</span> <span class="n">default_trtnet</span><span class="p">()</span><span class="o">.</span><span class="n">add_plugin_v2</span><span class="p">(</span><span class="n">plug_inputs</span><span class="p">,</span> <span class="n">plugin</span><span class="p">)</span>
<span class="n">output_draft_token_ids</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_draft_lens</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_paths</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">2</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_current_scores</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">3</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_next_expand_indices</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">4</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_all_layers_scores</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_all_layers_draft_token_ids</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">6</span><span class="p">),</span>
<span class="n">layer</span><span class="p">)</span>
<span class="n">output_all_layers_draft_token_ids_predecessor</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span>
<span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">7</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">tuple</span><span class="p">([</span>
<span class="n">output_draft_token_ids</span><span class="p">,</span> <span class="n">output_draft_lens</span><span class="p">,</span> <span class="n">output_paths</span><span class="p">,</span>
<span class="n">output_current_scores</span><span class="p">,</span> <span class="n">output_next_expand_indices</span><span class="p">,</span>
<span class="n">output_all_layers_scores</span><span class="p">,</span> <span class="n">output_all_layers_draft_token_ids</span><span class="p">,</span>
<span class="n">output_all_layers_draft_token_ids_predecessor</span>
<span class="p">])</span>
<span class="k">def</span><span class="w"> </span><span class="nf">eagle_prepare_drafter_inputs_plugin</span><span class="p">(</span>
<span class="n">layer_idx</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">num_layers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">max_non_leaves_per_layer</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">attention_params</span><span class="p">:</span> <span class="n">AttentionParams</span><span class="p">,</span> <span class="n">input_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">chunked_context_next_tokens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">accepted_token_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">accepted_lens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">accepted_path_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">next_draft_tokens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">next_draft_paths</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">prev_draft_lens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">prev_draft_paths</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">hidden_size_batch_level_starts</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_gen_tokens</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">input_spec_decoding_generation_lengths</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Prepares inputs for the EagleNet inference.</span>
<span class="sd"> Visit tests/model/eagle/test_prepare_drafter_inputs.py for input/output examples.</span>
<span class="sd"> Parameters:</span>
<span class="sd"> layer_idx : int</span>
<span class="sd"> Index of the EagleNet. 0 means context phase EagleNet or EagleNet0,</span>
<span class="sd"> &gt; 0 means EagleNetX or generation phase of EagleNet</span>
<span class="sd"> num_layers : int</span>
<span class="sd"> Number of Eagle layers.</span>
<span class="sd"> max_non_leaves_per_layer : int</span>
<span class="sd"> Number of nodes that can be non leaf in the tree at each level of the tree.</span>
<span class="sd"> attention_params : AttentionParams</span>
<span class="sd"> input_ids : Tensor</span>
<span class="sd"> [num_tokens]</span>
<span class="sd"> Tokens ids, inputs to the base model.</span>
<span class="sd"> chunked_context_next_tokens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> The first token of the next chunk in chunked context.</span>
<span class="sd"> -1 if current chunk is the last chunk or requests is in the gen phase.</span>
<span class="sd"> accepted_token_ids : Tensor</span>
<span class="sd"> [batch_size, max_path_len]</span>
<span class="sd"> Accepted tokens ids.</span>
<span class="sd"> accepted_lens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Number of accepted tokens.</span>
<span class="sd"> accepted_path_ids : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Idx of the accepted path in prev_draft_paths.</span>
<span class="sd"> next_draft_tokens : Tensor</span>
<span class="sd"> [batch_size, max_decoding_draft_tokens]</span>
<span class="sd"> Tokens ids of the draft tokens being drafted by EagleNet</span>
<span class="sd"> next_draft_lens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Number of drafted tokens in next_draft_tokens</span>
<span class="sd"> next_draft_paths : Tensor</span>
<span class="sd"> [batch_size, max_decoding_tokens, max_path_len]</span>
<span class="sd"> Paths of the draft tokens for the next iteration. In EAGLE-1 is the same as prev_draft_paths</span>
<span class="sd"> prev_draft_lens : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Number of draft tokens, inputs to the base model.</span>
<span class="sd"> 0 for ctx requests and actual draft len for gen requests.</span>
<span class="sd"> prev_draft_paths : Tensor</span>
<span class="sd"> [batch_size, max_decoding_tokens, max_path_len]</span>
<span class="sd"> Paths of the draft tokens inputs to the base model.</span>
<span class="sd"> hidden_size_batch_level_starts : Tensor</span>
<span class="sd"> [max_draft_path_len * batch_size + 1]</span>
<span class="sd"> Exclusive sum of the starts of the segments of the hidden states in the concatenated array.</span>
<span class="sd"> Hidden states shape is (flattened and w/o padding)</span>
<span class="sd"> [max_draft_path_len, batch_size, num_output_tokens_i_j], where num_output_tokens_i_j</span>
<span class="sd"> depends on the path of request j at level i.</span>
<span class="sd"> input_gen_tokens : Tensor</span>
<span class="sd"> [num_gen_tokens]</span>
<span class="sd"> Only needed to infer number of generation tokens from its shape. The content is irrelevant</span>
<span class="sd"> input_spec_decoding_generation_lengths : Tensor</span>
<span class="sd"> [num_gen_requests]</span>
<span class="sd"> Number of tokens for the base model. Only used to infer num_gen_requests from its shape, the content is irrelevant.</span>
<span class="sd"> Return:</span>
<span class="sd"> sequence_length : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Sequence length of the next EagleNet iteration.</span>
<span class="sd"> For EagleNet0 equals to the (prompt_len + num_generated_tokens + accepted_lens).</span>
<span class="sd"> For EagleNetX (X &gt; 0) (seq_len_eagle_net_0 + spec_decoding_generation_lengths).</span>
<span class="sd"> context_length : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Context length of the next EagleNet iteration.</span>
<span class="sd"> For EagleNet0 it is either the actual context length of the request (for ctx requests)</span>
<span class="sd"> or the number of accepted tokens in this iteration. EagleNet0&#39;s attn does chunked context attn.</span>
<span class="sd"> For EagleNetX (X &gt; 0), context length equals to the sequence length of the EagleNet0.</span>
<span class="sd"> spec_decoding_generation_lengths : Tensor</span>
<span class="sd"> [batch_size]</span>
<span class="sd"> Only relevant for EagleNetX (X &gt; 0).</span>
<span class="sd"> Number of draft tokens.</span>
<span class="sd"> spec_decoding_position_offsets : Tensor</span>
<span class="sd"> [batch_size, max_decoding_tokens]</span>
<span class="sd"> Only relevant for EagleNetX (X &gt; 0).</span>
<span class="sd"> Position offsets of the selected tokens from output_ids.</span>
<span class="sd"> spec_decoding_packed_mask : Tensor</span>
<span class="sd"> [batch_size, max_decoding_tokens, ceil(max_decoding_tokens / 32)]</span>
<span class="sd"> Only relevant for EagleNetX (X &gt; 0).</span>
<span class="sd"> uint32_t packed masks.</span>
<span class="sd"> output_ids : Tensor</span>
<span class="sd"> [batch_size * max_non_leaves_per_layer * layer_idx] for layer_idx &gt; 0</span>
<span class="sd"> [num_tokens - num_gen_tokens + num_gen_requests * (num_layers + 1)] for layer_idx == 0</span>
<span class="sd"> Token ids selected for the EagleNet iteration.</span>
<span class="sd"> Tensor&#39;s actual size is larger than num_output_tokens.</span>
<span class="sd"> position_ids : Tensor</span>
<span class="sd"> [batch_size] for layer_idx &gt; 0</span>
<span class="sd"> [num_tokens - num_gen_tokens + num_gen_requests * (num_layers + 1)] for layer_idx == 0</span>
<span class="sd"> Position ids of the tokens selected for the EagleNet iteration.</span>
<span class="sd"> Tensor&#39;s actual size is larger than num_output_tokens.</span>
<span class="sd"> hidden_states_indices : Tensor</span>
<span class="sd"> [batch_size * max_non_leaves_per_layer * layer_idx] for layer_idx &gt; 0</span>
<span class="sd"> [num_tokens - num_gen_tokens + num_gen_requests * (num_layers + 1)] for layer_idx == 0</span>
<span class="sd"> Indices of the hidden states to be selected from aggregated hidden states for the next iteration.</span>
<span class="sd"> Tensor&#39;s actual size is larger than num_output_tokens.</span>
<span class="sd"> last_token_indices : Tensor</span>
<span class="sd"> [batch_size * max_non_leaves_per_layer]</span>
<span class="sd"> Indices of the hidden states to be converted to logits after the next EagleNet iteration.</span>
<span class="sd"> Tensor&#39;s actual size is larger than num_output_tokens.</span>
<span class="sd"> num_last_token_indices : Tensor</span>
<span class="sd"> []</span>
<span class="sd"> Number of logits selected after the next EagleNet iteration.</span>
<span class="sd"> Tensors containing size of the outputs of V3 plugins. 0-D tensor.</span>
<span class="sd"> out_hidden_size_batch_level_starts : Tensor</span>
<span class="sd"> [max_draft_path_len * batch_size + 1]</span>
<span class="sd"> Same as hidden_size_batch_level_starts, but with updated path lens for the next level.</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">plg_creator</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">get_plugin_registry</span><span class="p">()</span><span class="o">.</span><span class="n">get_creator</span><span class="p">(</span>
<span class="s1">&#39;EaglePrepareDrafterInputs&#39;</span><span class="p">,</span> <span class="s1">&#39;1&#39;</span><span class="p">,</span> <span class="n">TRT_LLM_PLUGIN_NAMESPACE</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">plg_creator</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">layer_idx</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span><span class="s2">&quot;layer_idx&quot;</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">layer_idx</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">num_layers</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span><span class="s2">&quot;num_layers&quot;</span><span class="p">,</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">num_layers</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">max_non_leaves_per_layer</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginField</span><span class="p">(</span>
<span class="s2">&quot;max_non_leaves_per_layer&quot;</span><span class="p">,</span>
<span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">max_non_leaves_per_layer</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
<span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldType</span><span class="o">.</span><span class="n">INT32</span><span class="p">)</span>
<span class="n">pfc</span> <span class="o">=</span> <span class="n">trt</span><span class="o">.</span><span class="n">PluginFieldCollection</span><span class="p">(</span>
<span class="p">[</span><span class="n">layer_idx</span><span class="p">,</span> <span class="n">num_layers</span><span class="p">,</span> <span class="n">max_non_leaves_per_layer</span><span class="p">])</span>
<span class="n">plugin</span> <span class="o">=</span> <span class="n">plg_creator</span><span class="o">.</span><span class="n">create_plugin</span><span class="p">(</span><span class="s2">&quot;eagle_prepare_drafter_inputs_plugin&quot;</span><span class="p">,</span>
<span class="n">pfc</span><span class="p">,</span> <span class="n">trt</span><span class="o">.</span><span class="n">TensorRTPhase</span><span class="o">.</span><span class="n">BUILD</span><span class="p">)</span>
<span class="n">plug_inputs</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span><span class="p">,</span> <span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span><span class="p">,</span>
<span class="n">input_ids</span><span class="p">,</span> <span class="n">chunked_context_next_tokens</span><span class="p">,</span> <span class="n">accepted_token_ids</span><span class="p">,</span>
<span class="n">accepted_lens</span><span class="p">,</span> <span class="n">accepted_path_ids</span><span class="p">,</span> <span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span>
<span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">prev_draft_lens</span><span class="p">,</span> <span class="n">prev_draft_paths</span><span class="p">,</span>
<span class="n">hidden_size_batch_level_starts</span><span class="p">,</span> <span class="n">input_gen_tokens</span><span class="p">,</span>
<span class="n">input_spec_decoding_generation_lengths</span>
<span class="p">]</span>
<span class="n">plug_inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span><span class="o">.</span><span class="n">trt_tensor</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">plug_inputs</span><span class="p">]</span>
<span class="n">shape_inputs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">layer</span> <span class="o">=</span> <span class="n">default_trtnet</span><span class="p">()</span><span class="o">.</span><span class="n">add_plugin_v3</span><span class="p">(</span><span class="n">plug_inputs</span><span class="p">,</span> <span class="n">shape_inputs</span><span class="p">,</span> <span class="n">plugin</span><span class="p">)</span>
<span class="n">sequence_length</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">context_length</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">spec_decoding_generation_lengths</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">2</span><span class="p">),</span>
<span class="n">layer</span><span class="p">)</span>
<span class="n">spec_decoding_position_offsets</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">3</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">spec_decoding_packed_mask</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">4</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">output_ids</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">6</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">hidden_states_indices</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">7</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">last_token_indices</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">8</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">num_last_token_indices</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">9</span><span class="p">),</span> <span class="n">layer</span><span class="p">)</span>
<span class="n">out_hidden_size_batch_level_starts</span> <span class="o">=</span> <span class="n">_create_tensor</span><span class="p">(</span><span class="n">layer</span><span class="o">.</span><span class="n">get_output</span><span class="p">(</span><span class="mi">10</span><span class="p">),</span>
<span class="n">layer</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">tuple</span><span class="p">([</span>
<span class="n">sequence_length</span><span class="p">,</span> <span class="n">context_length</span><span class="p">,</span> <span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">,</span> <span class="n">spec_decoding_packed_mask</span><span class="p">,</span> <span class="n">output_ids</span><span class="p">,</span>
<span class="n">position_ids</span><span class="p">,</span> <span class="n">hidden_states_indices</span><span class="p">,</span> <span class="n">last_token_indices</span><span class="p">,</span>
<span class="n">num_last_token_indices</span><span class="p">,</span> <span class="n">out_hidden_size_batch_level_starts</span>
<span class="p">])</span>
<span class="k">class</span><span class="w"> </span><span class="nc">EagleNet</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">,</span> <span class="n">logits_dtype</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">drafter</span> <span class="o">=</span> <span class="n">LLaMAModel</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">config</span> <span class="o">=</span> <span class="n">config</span>
<span class="bp">self</span><span class="o">.</span><span class="n">logits_dtype</span> <span class="o">=</span> <span class="n">logits_dtype</span>
<span class="n">vocab_size_padded</span> <span class="o">=</span> <span class="n">pad_vocab_size</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
<span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">)</span>
<span class="k">if</span> <span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lm_head</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">vocab_size_padded</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lm_head</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">input_ids</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">last_token_indices</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">hidden_states</span><span class="p">,</span> <span class="n">cache</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">drafter</span><span class="p">(</span>
<span class="n">input_ids</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="n">position_ids</span><span class="p">,</span>
<span class="n">use_cache</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">spec_decoding_params</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="p">,</span>
<span class="n">kv_cache_params</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="p">,</span>
<span class="n">attention_params</span><span class="o">=</span><span class="n">attention_params</span><span class="p">,</span>
<span class="n">hidden_states_for_embed</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">gather_last_token_logits</span><span class="p">(</span>
<span class="n">hidden_states</span><span class="p">,</span> <span class="n">last_token_indices</span><span class="p">,</span>
<span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">)</span>
<span class="k">return</span> <span class="n">cast</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lm_head</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">),</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">cache</span>
<span class="k">return</span> <span class="kc">None</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">cache</span>
<div class="viewcode-block" id="EagleForCausalLM">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.EagleForCausalLM">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">EagleForCausalLM</span><span class="p">(</span><span class="n">LLaMAForCausalLM</span><span class="p">):</span>
<span class="n">config_class</span> <span class="o">=</span> <span class="n">EagleConfig</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">EagleConfig</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_eagle_layers</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_non_leaves_per_layer</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">max_non_leaves_per_layer</span>
<span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">vocab_size</span>
<span class="n">vocab_size_padded</span> <span class="o">=</span> <span class="n">pad_vocab_size</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
<span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">)</span>
<span class="n">eagle_net_config</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">eagle_net_config</span>
<span class="n">eagle_net_config</span><span class="o">.</span><span class="n">mapping</span> <span class="o">=</span> <span class="n">Mapping</span><span class="p">(</span><span class="n">world_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">rank</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">rank</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">pp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">eagle_net_config</span><span class="o">.</span><span class="n">fc_after_embed</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">eagle_net_config</span><span class="o">.</span><span class="n">use_input_layernorm_in_first_layer</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">eagle_net_config</span><span class="o">.</span><span class="n">use_last_layernorm</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">eagle_net_config</span><span class="o">.</span><span class="n">layer_idx_offset</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">eagle_nets</span> <span class="o">=</span> <span class="n">ModuleList</span><span class="p">([</span>
<span class="n">EagleNet</span><span class="p">(</span><span class="n">config</span><span class="o">=</span><span class="n">eagle_net_config</span><span class="p">,</span>
<span class="n">logits_dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">)</span>
<span class="p">])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">max_draft_len</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_prepare_drafter_inputs</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span> <span class="n">layer_idx</span><span class="p">,</span> <span class="n">input_ids</span><span class="p">,</span> <span class="n">chunked_context_next_tokens</span><span class="p">,</span>
<span class="n">accepted_token_ids</span><span class="p">,</span> <span class="n">accepted_lens</span><span class="p">,</span> <span class="n">accepted_path_ids</span><span class="p">,</span>
<span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span>
<span class="n">prev_draft_lens</span><span class="p">,</span> <span class="n">prev_draft_paths</span><span class="p">,</span> <span class="n">input_attention_params</span><span class="p">,</span>
<span class="n">input_kv_cache_params</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span>
<span class="n">host_ctx_eagle_net_request_types</span><span class="p">,</span>
<span class="n">host_ctx_eagle_net_context_lengths</span><span class="p">,</span>
<span class="n">host_ctx_eagle_net_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_gen_eagle_net_request_types</span><span class="p">,</span>
<span class="n">host_gen_eagle_net_context_lengths</span><span class="p">,</span>
<span class="n">host_gen_eagle_net_past_key_value_lengths</span><span class="p">,</span>
<span class="n">hidden_size_batch_level_starts</span><span class="p">,</span> <span class="n">input_gen_tokens</span><span class="p">,</span>
<span class="n">input_spec_decoding_generation_lengths</span><span class="p">,</span> <span class="n">spec_decoding_use</span><span class="p">):</span>
<span class="n">drafter_inputs</span> <span class="o">=</span> <span class="n">eagle_prepare_drafter_inputs_plugin</span><span class="p">(</span>
<span class="n">layer_idx</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_non_leaves_per_layer</span><span class="p">,</span>
<span class="n">input_attention_params</span><span class="p">,</span> <span class="n">input_ids</span><span class="p">,</span> <span class="n">chunked_context_next_tokens</span><span class="p">,</span>
<span class="n">accepted_token_ids</span><span class="p">,</span> <span class="n">accepted_lens</span><span class="p">,</span> <span class="n">accepted_path_ids</span><span class="p">,</span>
<span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span>
<span class="n">prev_draft_lens</span><span class="p">,</span> <span class="n">prev_draft_paths</span><span class="p">,</span> <span class="n">hidden_size_batch_level_starts</span><span class="p">,</span>
<span class="n">input_gen_tokens</span><span class="p">,</span> <span class="n">input_spec_decoding_generation_lengths</span><span class="p">)</span>
<span class="n">sequence_length</span><span class="p">,</span> <span class="n">context_lengths</span><span class="p">,</span> \
<span class="n">spec_decoding_generation_lengths</span><span class="p">,</span> <span class="n">spec_decoding_position_offsets</span><span class="p">,</span> \
<span class="n">spec_decoding_packed_mask</span><span class="p">,</span> <span class="n">output_ids</span><span class="p">,</span> <span class="n">position_ids</span><span class="p">,</span> <span class="n">hidden_states_indices</span><span class="p">,</span> \
<span class="n">last_token_indices</span><span class="p">,</span> <span class="n">num_last_token_indices</span><span class="p">,</span> <span class="n">out_hidden_size_batch_level_starts</span> \
<span class="o">=</span> <span class="n">drafter_inputs</span>
<span class="n">attention_params</span> <span class="o">=</span> <span class="n">input_attention_params</span>
<span class="n">kv_cache_params</span> <span class="o">=</span> <span class="n">input_kv_cache_params</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span> <span class="o">=</span> <span class="n">sequence_length</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span> <span class="o">=</span> <span class="n">context_lengths</span>
<span class="k">if</span> <span class="n">layer_idx</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span> <span class="o">=</span> <span class="n">host_ctx_eagle_net_request_types</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span> <span class="o">=</span> <span class="n">host_ctx_eagle_net_context_lengths</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_past_key_value_lengths</span> <span class="o">=</span> <span class="n">host_ctx_eagle_net_past_key_value_lengths</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">host_request_types</span> <span class="o">=</span> <span class="n">host_gen_eagle_net_request_types</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">host_context_lengths</span> <span class="o">=</span> <span class="n">host_gen_eagle_net_context_lengths</span>
<span class="n">kv_cache_params</span><span class="o">.</span><span class="n">host_past_key_value_lengths</span> <span class="o">=</span> <span class="n">host_gen_eagle_net_past_key_value_lengths</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">layer_idx</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="n">SpecDecodingParams</span><span class="p">(</span>
<span class="kc">True</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span><span class="p">,</span> <span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_position_offsets</span><span class="p">,</span> <span class="n">spec_decoding_packed_mask</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="p">)</span>
<span class="c1"># Get hidden states for accepted ids</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_slice_hidden_states</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
<span class="n">hidden_states_indices</span><span class="p">)</span>
<span class="n">eagle_net_inputs</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;input_ids&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">output_ids</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;position_ids&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">position_ids</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;last_token_indices&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">last_token_indices</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;attention_params&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">attention_params</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;kv_cache_params&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">kv_cache_params</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;spec_decoding_params&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">spec_decoding_params</span>
<span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;hidden_states&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="k">return</span> <span class="n">eagle_net_inputs</span><span class="p">,</span> <span class="n">out_hidden_size_batch_level_starts</span><span class="p">,</span> <span class="n">num_last_token_indices</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_slice_hidden_states</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">indices</span><span class="p">):</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">index_select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">indices</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">hidden_states</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">shape</span><span class="p">(</span><span class="n">indices</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">shape</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">)]),</span>
<span class="n">zero_is_placeholder</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">return</span> <span class="n">hidden_states</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_eagle_fwd_helper</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">lm_logits</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> EAGLE inference can be viewed as</span>
<span class="sd"> TRT_Engine(Target -&gt; Draft0 -&gt; Draft1 -&gt; .. -&gt; DraftK-1) -&gt; Runtime -&gt; TRT_Engine(..) -&gt; ..</span>
<span class="sd"> Target is Base model and Draft is EagleNet.</span>
<span class="sd"> Each EagleNet call can be viewed as call to Draft LLM in TensorRT-LLM.</span>
<span class="sd"> We have to</span>
<span class="sd"> 1. prepare input tensors before the EagleNet call (like in the the runtime),</span>
<span class="sd"> 2. call EagleNet,</span>
<span class="sd"> 3. decode draft tokens after the EagleNet.</span>
<span class="sd"> The only difference with normal execution of the Draft model is that in EAGLE,</span>
<span class="sd"> all these 3 things happen inside of the TensorRT engine execution.</span>
<span class="sd"> We do 1 and 3 inside of the plugins.</span>
<span class="sd"> For 1. We call eagle_prepare_drafter_inputs_plugin and for 3. eagle_draft_decoder_plugin.</span>
<span class="sd"> The first call to the EagleNet (Draft0 == EagleNet0) is the context phase.</span>
<span class="sd"> For context request we populate the KV cache of the EagleNet.</span>
<span class="sd"> For generation request that have accepted tokens we emulate KV cache reuse by doing chunked attention,</span>
<span class="sd"> where chunk is the newly accepted tokens -- all previous tokens are already in the KV cache.</span>
<span class="sd"> The following calls to the EagleNet (EagleNetX (X &gt; 0)) are generation phase.</span>
<span class="sd"> For each EagleNetX we select tokens based on the current path which are going to be used for the generation.</span>
<span class="sd"> Let&#39;s consider an example: prompt ABCD. EAGLE-1, i.e tree is fixed for the iteration.</span>
<span class="sd"> Tree:</span>
<span class="sd"> ┌───┐</span>
<span class="sd"> │ 0 │</span>
<span class="sd"> └─┬─┘</span>
<span class="sd"> ┌─────┴─────┐</span>
<span class="sd"> ┌─┴─┐ ┌─┴─┐ ┌─┴─┐</span>
<span class="sd"> │ 1 │ │ 2 │ │ 3 │</span>
<span class="sd"> └─┬─┘ └─┬─┘ └───┘</span>
<span class="sd"> ┌─┴─┐ ┌─┴─┐</span>
<span class="sd"> │ 4 │ │ 5 │</span>
<span class="sd"> └─┬─┘ └─┬─┘</span>
<span class="sd"> ┌─┴─┐ ┌─┴─┐</span>
<span class="sd"> │ 6 │ │ 7 │</span>
<span class="sd"> └───┘ └───┘</span>
<span class="sd"> First iteration of the TRT engine. Request is context request:</span>
<span class="sd"> 1. Base model is called for [ABCD] tokens produces token E.</span>
<span class="sd"> 2. Draft0 is called for tokens [BCDE] and produces</span>
<span class="sd"> three possibilities F, G and H for positions 1, 2 and 3 respectively.</span>
<span class="sd"> 3. Since H (position 3) is a leaf, it is not chosen as the input to Draft1 inference.</span>
<span class="sd"> 4. Draft1 is called for tokens [FG] with appropriate mask of:</span>
<span class="sd"> |F|G</span>
<span class="sd"> F|1|0</span>
<span class="sd"> G|0|1</span>
<span class="sd"> It produces tokens I and J for positions 4 and 5.</span>
<span class="sd"> 6. Draft2 is called for inputs [FGIJ] with mask of</span>
<span class="sd"> |F|G|I|J</span>
<span class="sd"> F|1|0|0|0</span>
<span class="sd"> G|0|1|0|0</span>
<span class="sd"> I|1|0|1|0</span>
<span class="sd"> J|0|1|0|1</span>
<span class="sd"> Note that we could&#39;ve stored FG in KV cache and provide only IJ tokens here</span>
<span class="sd"> with mask for past KV cache, but it is not supported in TensorRT-LLM attention at the moment.</span>
<span class="sd"> Draft2 produces tokens K and L at positions 6 and 7.</span>
<span class="sd"> 7. Resulting outputs are:</span>
<span class="sd"> 7.1 accepted_ids [E]</span>
<span class="sd"> 7.2 next_draft_tokens [FGHIJKL]</span>
<span class="sd"> Second iteration of the TRT engine. Request is the generation request.</span>
<span class="sd"> 1. Base model is called for [EFGHIJKL]. Let&#39;s assume that it accepts [FIKM], i.e. the left-most path in the tree.</span>
<span class="sd"> 2. Draft0 is called as context phase for [FIKM] -- to append to kv cache of the existing [BCDE].</span>
<span class="sd"> It produces tokens N, O and P for positions 1, 2 and 3.</span>
<span class="sd"> 3. Draft1 is called as generation phase for [NO] tokens.</span>
<span class="sd"> etc.</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="n">input_tree_params</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;tree_params&quot;</span><span class="p">]</span>
<span class="n">draft_tokens</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;draft_tokens&#39;</span><span class="p">]</span>
<span class="n">draft_lens</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;draft_lens&#39;</span><span class="p">]</span>
<span class="n">eagle_temperature</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;eagle_temperature&#39;</span><span class="p">]</span>
<span class="n">rand_data_validation</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;rand_data_validation&#39;</span><span class="p">]</span>
<span class="n">posterior_alpha</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;posterior_alpha&#39;</span><span class="p">]</span>
<span class="n">posterior_threshold</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;posterior_threshold&#39;</span><span class="p">]</span>
<span class="n">input_ids</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;input_ids&#39;</span><span class="p">]</span>
<span class="n">chunked_context_next_tokens</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;chunked_context_next_tokens&#39;</span><span class="p">]</span>
<span class="n">host_ctx_eagle_net_request_types</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;host_ctx_eagle_net_request_types&#39;</span><span class="p">]</span>
<span class="n">host_ctx_eagle_net_context_lengths</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;host_ctx_eagle_net_context_lengths&#39;</span><span class="p">]</span>
<span class="n">host_ctx_eagle_net_past_key_value_lengths</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;host_ctx_eagle_net_past_key_value_lengths&#39;</span><span class="p">]</span>
<span class="n">host_gen_eagle_net_request_types</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;host_gen_eagle_net_request_types&#39;</span><span class="p">]</span>
<span class="n">host_gen_eagle_net_context_lengths</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;host_gen_eagle_net_context_lengths&#39;</span><span class="p">]</span>
<span class="n">host_gen_eagle_net_past_key_value_lengths</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;host_gen_eagle_net_past_key_value_lengths&#39;</span><span class="p">]</span>
<span class="n">input_gen_tokens</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;input_gen_tokens&quot;</span><span class="p">]</span>
<span class="n">greedy_sampling</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;greedy_sampling&quot;</span><span class="p">]</span>
<span class="c1"># Eagle-2</span>
<span class="n">use_dynamic_tree</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;use_dynamic_tree&#39;</span><span class="p">]</span>
<span class="n">dynamic_tree_max_topK</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;dynamic_tree_max_topK&#39;</span><span class="p">]</span>
<span class="n">prev_scores</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;prev_scores&#39;</span><span class="p">]</span>
<span class="n">current_expand_indices</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;current_expand_indices&#39;</span><span class="p">]</span>
<span class="n">all_layers_scores</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;all_layers_scores&#39;</span><span class="p">]</span>
<span class="n">all_layers_draft_token_ids</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;all_layers_draft_token_ids&#39;</span><span class="p">]</span>
<span class="n">all_layers_draft_token_ids_predecessor</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;all_layers_draft_token_ids_predecessor&#39;</span><span class="p">]</span>
<span class="c1"># Sample target tokens and accept them</span>
<span class="c1"># next_draft_tokens, next_draft_lens, hidden_size_batch_level_starts are outputted here just to</span>
<span class="c1"># reserve the tensor with max size, which eagle_draft_decoder_plugin and</span>
<span class="c1"># eagle_prepare_drafter_inputs_plugin are going to directly write to</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">eagle_sample_and_accept_draft_plugin</span><span class="p">(</span>
<span class="n">lm_logits</span><span class="p">,</span> <span class="n">draft_tokens</span><span class="p">,</span> <span class="n">draft_lens</span><span class="p">,</span> <span class="n">eagle_temperature</span><span class="p">,</span>
<span class="n">rand_data_validation</span><span class="p">,</span> <span class="n">posterior_alpha</span><span class="p">,</span> <span class="n">posterior_threshold</span><span class="p">,</span>
<span class="n">input_tree_params</span><span class="p">,</span> <span class="n">greedy_sampling</span><span class="p">,</span> <span class="n">use_dynamic_tree</span><span class="p">)</span>
<span class="n">accepted_tokens</span><span class="p">,</span> <span class="n">num_accepted_tokens</span><span class="p">,</span> <span class="n">accepted_paths</span><span class="p">,</span> <span class="n">next_draft_tokens</span><span class="p">,</span> \
<span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">hidden_size_batch_level_starts</span> <span class="o">=</span> <span class="n">output</span>
<span class="n">attention_params</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;attention_params&quot;</span><span class="p">]</span>
<span class="n">kv_cache_params</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;kv_cache_params&quot;</span><span class="p">]</span>
<span class="n">spec_decoding_params</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;spec_decoding_params&quot;</span><span class="p">]</span>
<span class="n">input_hidden_states</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="c1"># Run EAGLE nets</span>
<span class="k">for</span> <span class="n">li</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">):</span>
<span class="c1"># Prepare EAGLE Net inputs.</span>
<span class="n">eagle_net_inputs</span><span class="p">,</span> <span class="n">hidden_size_batch_level_starts</span><span class="p">,</span> <span class="n">num_last_token_indices</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prepare_drafter_inputs</span><span class="p">(</span>
<span class="n">layer_idx</span><span class="o">=</span><span class="n">li</span><span class="p">,</span>
<span class="n">input_ids</span><span class="o">=</span><span class="n">input_ids</span><span class="p">,</span>
<span class="n">chunked_context_next_tokens</span><span class="o">=</span><span class="n">chunked_context_next_tokens</span><span class="p">,</span>
<span class="n">accepted_token_ids</span><span class="o">=</span><span class="n">accepted_tokens</span><span class="p">,</span>
<span class="n">accepted_lens</span><span class="o">=</span><span class="n">num_accepted_tokens</span><span class="p">,</span>
<span class="n">accepted_path_ids</span><span class="o">=</span><span class="n">accepted_paths</span><span class="p">,</span>
<span class="n">next_draft_tokens</span><span class="o">=</span><span class="n">next_draft_tokens</span><span class="p">,</span>
<span class="n">next_draft_lens</span><span class="o">=</span><span class="n">next_draft_lens</span><span class="p">,</span>
<span class="n">next_draft_paths</span><span class="o">=</span><span class="n">next_draft_paths</span><span class="p">,</span>
<span class="n">prev_draft_lens</span><span class="o">=</span><span class="n">draft_lens</span><span class="p">,</span>
<span class="n">prev_draft_paths</span><span class="o">=</span><span class="n">input_tree_params</span><span class="o">.</span><span class="n">paths</span><span class="p">,</span>
<span class="n">input_attention_params</span><span class="o">=</span><span class="n">attention_params</span><span class="p">,</span>
<span class="n">input_kv_cache_params</span><span class="o">=</span><span class="n">kv_cache_params</span><span class="p">,</span>
<span class="n">hidden_states</span><span class="o">=</span><span class="n">input_hidden_states</span><span class="p">,</span>
<span class="n">host_ctx_eagle_net_request_types</span><span class="o">=</span>
<span class="n">host_ctx_eagle_net_request_types</span><span class="p">,</span>
<span class="n">host_ctx_eagle_net_context_lengths</span><span class="o">=</span>
<span class="n">host_ctx_eagle_net_context_lengths</span><span class="p">,</span>
<span class="n">host_ctx_eagle_net_past_key_value_lengths</span><span class="o">=</span>
<span class="n">host_ctx_eagle_net_past_key_value_lengths</span><span class="p">,</span>
<span class="n">host_gen_eagle_net_request_types</span><span class="o">=</span>
<span class="n">host_gen_eagle_net_request_types</span><span class="p">,</span>
<span class="n">host_gen_eagle_net_context_lengths</span><span class="o">=</span>
<span class="n">host_gen_eagle_net_context_lengths</span><span class="p">,</span>
<span class="n">host_gen_eagle_net_past_key_value_lengths</span><span class="o">=</span>
<span class="n">host_gen_eagle_net_past_key_value_lengths</span><span class="p">,</span>
<span class="n">hidden_size_batch_level_starts</span><span class="o">=</span><span class="n">hidden_size_batch_level_starts</span><span class="p">,</span>
<span class="n">input_gen_tokens</span><span class="o">=</span><span class="n">input_gen_tokens</span><span class="p">,</span>
<span class="n">input_spec_decoding_generation_lengths</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span>
<span class="n">spec_decoding_generation_lengths</span><span class="p">,</span>
<span class="n">spec_decoding_use</span><span class="o">=</span><span class="n">spec_decoding_params</span><span class="o">.</span><span class="n">spec_decoding_use</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">single_eagle_net_iter</span><span class="p">(</span><span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span>
<span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">prev_scores</span><span class="p">,</span>
<span class="n">current_expand_indices</span><span class="p">,</span> <span class="n">all_layers_scores</span><span class="p">,</span>
<span class="n">all_layers_draft_token_ids</span><span class="p">,</span>
<span class="n">all_layers_draft_token_ids_predecessor</span><span class="p">):</span>
<span class="c1"># Run EAGLE Net</span>
<span class="c1"># NOTE: handle base net kv cache and eagle net kv cache are in the same tensor.</span>
<span class="c1"># EagleNet&#39;s kv cache is located starting at numBaseNetHiddenLayers in the kv tensor.</span>
<span class="n">logits</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">eagle_nets</span><span class="p">[</span><span class="n">li</span><span class="p">](</span>
<span class="o">**</span><span class="n">eagle_net_inputs</span><span class="p">)</span>
<span class="c1"># FIXME We need to take top_k_sampling as an input</span>
<span class="n">top_k_sampling</span> <span class="o">=</span> <span class="kc">True</span>
<span class="c1"># Decode draft tokens</span>
<span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">prev_scores</span><span class="p">,</span> <span class="n">current_expand_indices</span><span class="p">,</span> <span class="n">all_layers_scores</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids_predecessor</span> <span class="o">=</span> <span class="n">eagle_draft_decoder_plugin</span><span class="p">(</span>
<span class="n">li</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">,</span> <span class="n">top_k_sampling</span><span class="p">,</span> <span class="n">logits</span><span class="p">,</span>
<span class="n">num_last_token_indices</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">use_dynamic_tree</span><span class="p">,</span>
<span class="n">dynamic_tree_max_topK</span><span class="p">,</span> <span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span>
<span class="n">prev_scores</span><span class="p">,</span> <span class="n">current_expand_indices</span><span class="p">,</span> <span class="n">all_layers_scores</span><span class="p">,</span>
<span class="n">all_layers_draft_token_ids</span><span class="p">,</span>
<span class="n">all_layers_draft_token_ids_predecessor</span><span class="p">)</span>
<span class="k">return</span> <span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">prev_scores</span><span class="p">,</span> <span class="n">current_expand_indices</span><span class="p">,</span> <span class="n">all_layers_scores</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids_predecessor</span>
<span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> <span class="n">prev_scores</span><span class="p">,</span> \
<span class="n">current_expand_indices</span><span class="p">,</span> <span class="n">all_layers_scores</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids_predecessor</span> \
<span class="o">=</span> <span class="n">single_eagle_net_iter</span><span class="p">(</span><span class="n">next_draft_tokens</span><span class="p">,</span> <span class="n">next_draft_lens</span><span class="p">,</span> <span class="n">next_draft_paths</span><span class="p">,</span> \
<span class="n">prev_scores</span><span class="p">,</span> <span class="n">current_expand_indices</span><span class="p">,</span> <span class="n">all_layers_scores</span><span class="p">,</span> \
<span class="n">all_layers_draft_token_ids</span><span class="p">,</span> <span class="n">all_layers_draft_token_ids_predecessor</span><span class="p">)</span>
<span class="c1"># Update params</span>
<span class="k">if</span> <span class="n">li</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">eagle_net_0_sequence_length</span> <span class="o">=</span> <span class="n">eagle_net_inputs</span><span class="p">[</span>
<span class="s2">&quot;attention_params&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">sequence_length</span>
<span class="n">input_hidden_states</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">input_hidden_states</span> <span class="o">=</span> <span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="n">input_hidden_states</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">])</span>
<span class="n">kv_cache_params</span> <span class="o">=</span> <span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;kv_cache_params&quot;</span><span class="p">]</span>
<span class="n">attention_params</span> <span class="o">=</span> <span class="n">eagle_net_inputs</span><span class="p">[</span><span class="s2">&quot;attention_params&quot;</span><span class="p">]</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">context_lengths</span> <span class="o">=</span> <span class="n">eagle_net_0_sequence_length</span>
<span class="n">attention_params</span><span class="o">.</span><span class="n">sequence_length</span> <span class="o">=</span> <span class="n">eagle_net_0_sequence_length</span>
<span class="c1"># Mark tensors as output</span>
<span class="n">accepted_tokens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;accepted_tokens&#39;</span><span class="p">)</span>
<span class="n">num_accepted_tokens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;num_accepted_tokens&#39;</span><span class="p">)</span>
<span class="n">accepted_paths</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;accepted_paths&#39;</span><span class="p">)</span>
<span class="n">next_draft_tokens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_draft_tokens&#39;</span><span class="p">)</span>
<span class="n">next_draft_lens</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_draft_lens&#39;</span><span class="p">)</span>
<span class="n">next_draft_paths</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;next_draft_paths&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">next_draft_tokens</span>
<div class="viewcode-block" id="EagleForCausalLM.forward">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.EagleForCausalLM.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="n">extra_args</span> <span class="o">=</span> <span class="p">[</span>
<span class="s2">&quot;draft_tokens&quot;</span><span class="p">,</span> <span class="s2">&quot;draft_lens&quot;</span><span class="p">,</span> <span class="s2">&quot;eagle_temperature&quot;</span><span class="p">,</span>
<span class="s2">&quot;rand_data_validation&quot;</span><span class="p">,</span> <span class="s2">&quot;tree_params&quot;</span><span class="p">,</span>
<span class="s2">&quot;host_ctx_eagle_net_request_types&quot;</span><span class="p">,</span>
<span class="s2">&quot;host_ctx_eagle_net_context_lengths&quot;</span><span class="p">,</span>
<span class="s2">&quot;host_ctx_eagle_net_past_key_value_lengths&quot;</span><span class="p">,</span>
<span class="s2">&quot;host_gen_eagle_net_request_types&quot;</span><span class="p">,</span>
<span class="s2">&quot;host_gen_eagle_net_context_lengths&quot;</span><span class="p">,</span>
<span class="s2">&quot;host_gen_eagle_net_past_key_value_lengths&quot;</span><span class="p">,</span> <span class="s2">&quot;input_gen_tokens&quot;</span><span class="p">,</span>
<span class="s2">&quot;chunked_context_next_tokens&quot;</span><span class="p">,</span> <span class="s2">&quot;posterior_alpha&quot;</span><span class="p">,</span>
<span class="s2">&quot;posterior_threshold&quot;</span><span class="p">,</span> <span class="s2">&quot;greedy_sampling&quot;</span><span class="p">,</span> <span class="s2">&quot;use_dynamic_tree&quot;</span><span class="p">,</span>
<span class="s2">&quot;dynamic_tree_max_topK&quot;</span><span class="p">,</span> <span class="s2">&quot;prev_scores&quot;</span><span class="p">,</span> <span class="s2">&quot;current_expand_indices&quot;</span><span class="p">,</span>
<span class="s2">&quot;all_layers_scores&quot;</span><span class="p">,</span> <span class="s2">&quot;all_layers_draft_token_ids&quot;</span><span class="p">,</span>
<span class="s2">&quot;all_layers_draft_token_ids_predecessor&quot;</span>
<span class="p">]</span>
<span class="n">base_kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">k</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">extra_args</span><span class="p">}</span>
<span class="c1"># Base model forward</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">base_kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="n">extra_args</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;hidden_states&quot;</span><span class="p">]</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="p">{</span><span class="n">k</span><span class="p">:</span> <span class="n">v</span> <span class="k">for</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">items</span><span class="p">()</span> <span class="k">if</span> <span class="n">k</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">extra_args</span><span class="p">}</span>
<span class="k">assert</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;use_cache&#39;</span><span class="p">]</span> <span class="ow">and</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="n">lm_logits</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">all_hidden_states</span> <span class="o">=</span> <span class="n">hidden_states</span>
<span class="n">lm_logits</span> <span class="o">=</span> <span class="n">cast</span><span class="p">(</span><span class="n">lm_logits</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
<span class="c1"># Call eagle logic to accept prev draft tokens and predict next draft tokens</span>
<span class="n">next_draft_tokens</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_eagle_fwd_helper</span><span class="p">(</span><span class="n">lm_logits</span><span class="p">,</span>
<span class="n">all_hidden_states</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">hidden_states</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">&#39;hidden_states_output&#39;</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="k">return</span> <span class="n">next_draft_tokens</span>
<span class="k">return</span> <span class="n">hidden_states</span></div>
<div class="viewcode-block" id="EagleForCausalLM.prepare_inputs">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.EagleForCausalLM.prepare_inputs">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">prepare_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Inputs needed:</span>
<span class="sd"> device_request_types: [bs]</span>
<span class="sd"> draft_tokens: [bs, max_draft_len]</span>
<span class="sd"> draft_lens: [bs]</span>
<span class="sd"> spec_decoding_generation_lengths: [bs]</span>
<span class="sd"> spec_decoding_position_offsets: [bs, max_gen_tokens]</span>
<span class="sd"> spec_decoding_packed_mask: [bs, max_draft_len, packed_length] **</span>
<span class="sd"> eagle_temperature: [bs]</span>
<span class="sd"> rand_data_validation: [bs, max_draft_len]</span>
<span class="sd"> ** The mask is tricky since the boolean mask will need to be</span>
<span class="sd"> packed in runtime. So, the last dim will be:</span>
<span class="sd"> packed_length = ceil((max_draft_len+1)/32)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">default_range</span> <span class="o">=</span> <span class="n">GenerationMixin</span><span class="o">.</span><span class="n">default_range</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="n">use_gpt_attention_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">(</span>
<span class="p">)</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span>
<span class="n">use_gemm_plugin</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gemm_plugin</span>
<span class="n">paged_kv_cache</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_kv_cache</span>
<span class="n">multiple_profiles</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">multiple_profiles</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_batch_size&#39;</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">max_batch_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">gt_range</span> <span class="o">=</span> <span class="n">default_range</span><span class="p">(</span><span class="n">max_batch_size</span> <span class="o">*</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">),</span>
<span class="n">min_range</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">opt_offset</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;speculative_decoding_draft_tokens_external&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_draft_len&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_is_generation_length_variable&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="kc">True</span>
<span class="n">kwargs</span><span class="p">[</span>
<span class="s1">&#39;num_hidden_layers&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">eagle_net_config</span><span class="o">.</span><span class="n">num_hidden_layers</span>
<span class="c1"># Call base class prepare inputs</span>
<span class="n">inputs</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">prepare_inputs</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;spec_decoding_params&#39;</span><span class="p">]</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">PAGED</span> <span class="k">if</span> <span class="n">paged_kv_cache</span> <span class="k">else</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">CONTINUOUS</span>
<span class="n">enable_ctx_gen_opt_profiles</span> <span class="o">=</span> <span class="n">GenerationMixin</span><span class="o">.</span><span class="n">has_ctx_gen_opt_profiles</span><span class="p">(</span>
<span class="n">use_gpt_attention_plugin</span><span class="o">=</span><span class="n">use_gpt_attention_plugin</span><span class="p">,</span>
<span class="n">use_gemm_plugin</span><span class="o">=</span><span class="n">use_gemm_plugin</span><span class="p">,</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">kv_cache_type</span><span class="p">)</span>
<span class="n">num_profiles</span><span class="p">,</span> <span class="n">ranges</span> <span class="o">=</span> <span class="n">GenerationMixin</span><span class="o">.</span><span class="n">get_profiles_ranges</span><span class="p">(</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_beam_width&#39;</span><span class="p">],</span>
<span class="n">max_input_len</span><span class="o">=</span><span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_input_len&#39;</span><span class="p">],</span>
<span class="n">max_num_tokens</span><span class="o">=</span><span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;max_num_tokens&#39;</span><span class="p">],</span>
<span class="n">max_draft_len</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span><span class="p">,</span>
<span class="n">opt_batch_size</span><span class="o">=</span><span class="kc">None</span>
<span class="k">if</span> <span class="s1">&#39;opt_batch_size&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">kwargs</span> <span class="k">else</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;opt_batch_size&#39;</span><span class="p">],</span>
<span class="n">opt_num_tokens</span><span class="o">=</span><span class="kc">None</span>
<span class="k">if</span> <span class="s1">&#39;opt_num_tokens&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">kwargs</span> <span class="k">else</span> <span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;opt_num_tokens&#39;</span><span class="p">],</span>
<span class="n">enable_ctx_gen_opt_profiles</span><span class="o">=</span><span class="n">enable_ctx_gen_opt_profiles</span><span class="p">,</span>
<span class="n">multiple_profiles</span><span class="o">=</span><span class="n">multiple_profiles</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">kv_cache_type</span><span class="p">)</span>
<span class="n">bb_range</span> <span class="o">=</span> <span class="n">ranges</span><span class="p">[</span><span class="s1">&#39;bb_range&#39;</span><span class="p">]</span>
<span class="n">draft_len_range</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">bb_range</span><span class="p">))]</span>
<span class="n">decoding_len_range</span> <span class="o">=</span> <span class="p">[(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">bb_range</span><span class="p">))]</span>
<span class="n">path_len_range</span> <span class="o">=</span> <span class="p">[(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">bb_range</span><span class="p">))]</span>
<span class="n">gen_tokens_range</span> <span class="o">=</span> <span class="p">[</span><span class="n">gt_range</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">bb_range</span><span class="p">))]</span>
<span class="n">num_eagle_layers_range</span> <span class="o">=</span> <span class="p">[</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">bb_range</span><span class="p">))</span>
<span class="p">]</span>
<span class="n">draft_len_square_range</span> <span class="o">=</span> <span class="p">[(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span><span class="p">)</span>
<span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">bb_range</span><span class="p">))]</span>
<span class="n">draft_tokens</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;draft_tokens&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;draft_len&#39;</span><span class="p">,</span> <span class="n">draft_len_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">draft_lens</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;draft_lens&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">eagle_temperature</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;eagle_temperature&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s2">&quot;batch_size&quot;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">rand_data_validation</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;rand_data_validation&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;decoding_len&#39;</span><span class="p">,</span> <span class="n">decoding_len_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">posterior_alpha</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;posterior_alpha&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s2">&quot;batch_size&quot;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">posterior_threshold</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;posterior_threshold&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s2">&quot;batch_size&quot;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">draft_paths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;draft_paths&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span> <span class="o">+</span> <span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;decoding_len&#39;</span><span class="p">,</span> <span class="n">decoding_len_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;path_len&#39;</span><span class="p">,</span> <span class="n">path_len_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">host_ctx_eagle_net_request_types</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;host_ctx_eagle_net_request_types&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">host_ctx_eagle_net_context_lengths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;host_ctx_eagle_net_context_lengths&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">host_ctx_eagle_net_past_key_value_lengths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;host_ctx_eagle_net_past_key_value_lengths&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">host_gen_eagle_net_request_types</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;host_gen_eagle_net_request_types&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">host_gen_eagle_net_context_lengths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;host_gen_eagle_net_context_lengths&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">host_gen_eagle_net_past_key_value_lengths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;host_gen_eagle_net_past_key_value_lengths&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">input_gen_tokens</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;input_gen_tokens&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;gen_tokens&#39;</span><span class="p">,</span> <span class="n">gen_tokens_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">chunked_context_next_tokens</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;chunked_context_next_tokens&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">greedy_sampling</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;greedy_sampling&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">use_dynamic_tree</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;use_dynamic_tree&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">dynamic_tree_max_topK</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;dynamic_tree_max_topK&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">prev_scores</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;prev_scores&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;draft_len&#39;</span><span class="p">,</span> <span class="n">draft_len_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">current_expand_indices</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;current_expand_indices&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span><span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;draft_len&#39;</span><span class="p">,</span> <span class="n">draft_len_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">all_layers_scores</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;all_layers_scores&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span>
<span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span>
<span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_eagle_layers&#39;</span><span class="p">,</span>
<span class="n">num_eagle_layers_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;draft_len_square&#39;</span><span class="p">,</span>
<span class="n">draft_len_square_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">all_layers_draft_token_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;all_layers_draft_token_ids&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span>
<span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span>
<span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_eagle_layers&#39;</span><span class="p">,</span> <span class="n">num_eagle_layers_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;draft_len_square&#39;</span><span class="p">,</span> <span class="n">draft_len_square_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">all_layers_draft_token_ids_predecessor</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
<span class="n">name</span><span class="o">=</span><span class="s1">&#39;all_layers_draft_token_ids_predecessor&#39;</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
<span class="n">shape</span><span class="o">=</span><span class="p">[</span>
<span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_eagle_layers</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_draft_len</span>
<span class="p">],</span>
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([</span>
<span class="p">(</span><span class="s1">&#39;batch_size&#39;</span><span class="p">,</span> <span class="n">bb_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;num_eagle_layers&#39;</span><span class="p">,</span> <span class="n">num_eagle_layers_range</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;draft_len_square&#39;</span><span class="p">,</span> <span class="n">draft_len_square_range</span><span class="p">),</span>
<span class="p">]))</span>
<span class="n">tree_params</span> <span class="o">=</span> <span class="n">TreeParams</span><span class="p">(</span><span class="n">paths</span><span class="o">=</span><span class="n">draft_paths</span><span class="p">)</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;draft_tokens&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">draft_tokens</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;draft_lens&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">draft_lens</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;eagle_temperature&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">eagle_temperature</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;posterior_alpha&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">posterior_alpha</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;posterior_threshold&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">posterior_threshold</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;rand_data_validation&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">rand_data_validation</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;tree_params&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">tree_params</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;host_ctx_eagle_net_request_types&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">host_ctx_eagle_net_request_types</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;host_ctx_eagle_net_context_lengths&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">host_ctx_eagle_net_context_lengths</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;host_ctx_eagle_net_past_key_value_lengths&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">host_ctx_eagle_net_past_key_value_lengths</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;host_gen_eagle_net_request_types&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">host_gen_eagle_net_request_types</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;host_gen_eagle_net_context_lengths&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">host_gen_eagle_net_context_lengths</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;host_gen_eagle_net_past_key_value_lengths&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">host_gen_eagle_net_past_key_value_lengths</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;input_gen_tokens&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">input_gen_tokens</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;chunked_context_next_tokens&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">chunked_context_next_tokens</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;greedy_sampling&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">greedy_sampling</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;use_dynamic_tree&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">use_dynamic_tree</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;dynamic_tree_max_topK&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">dynamic_tree_max_topK</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;prev_scores&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">prev_scores</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;current_expand_indices&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">current_expand_indices</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;all_layers_scores&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">all_layers_scores</span>
<span class="n">inputs</span><span class="p">[</span><span class="s1">&#39;all_layers_draft_token_ids&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">all_layers_draft_token_ids</span>
<span class="n">inputs</span><span class="p">[</span>
<span class="s1">&#39;all_layers_draft_token_ids_predecessor&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">all_layers_draft_token_ids_predecessor</span>
<span class="k">return</span> <span class="n">inputs</span></div>
<div class="viewcode-block" id="EagleForCausalLM.from_hugging_face">
<a class="viewcode-back" href="../../../../python-api/tensorrt_llm.models.html#tensorrt_llm.models.EagleForCausalLM.from_hugging_face">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_hugging_face</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">hf_model_or_dir</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="s1">&#39;transformers.PreTrainedModel&#39;</span><span class="p">],</span>
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;auto&#39;</span><span class="p">,</span>
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Mapping</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">quant_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">hf_model_or_dir</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
<span class="n">speculative_model_dir</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;speculative_model_dir&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">tllm_config</span> <span class="o">=</span> <span class="n">EagleConfig</span><span class="o">.</span><span class="n">from_hugging_face</span><span class="p">(</span><span class="n">hf_model_or_dir</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">quant_config</span><span class="o">=</span><span class="n">quant_config</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="c1"># for rank in range(mapping.world_size):</span>
<span class="n">tllm_config</span><span class="o">.</span><span class="n">mapping</span> <span class="o">=</span> <span class="n">Mapping</span><span class="p">(</span><span class="n">world_size</span><span class="o">=</span><span class="n">mapping</span><span class="o">.</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">rank</span><span class="o">=</span><span class="n">mapping</span><span class="o">.</span><span class="n">rank</span><span class="p">,</span>
<span class="n">cp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">pp_size</span><span class="o">=</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_size</span><span class="p">)</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">EagleForCausalLM</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">check_and_update</span><span class="p">(</span><span class="n">module</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">module</span><span class="p">,</span> <span class="s1">&#39;tllm_to_externel_key_dict&#39;</span><span class="p">):</span>
<span class="n">module</span><span class="o">.</span><span class="n">tllm_to_externel_key_dict</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="nb">dict</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">module</span><span class="o">.</span><span class="n">tllm_to_externel_key_dict</span> <span class="o">=</span> <span class="nb">dict</span>
<span class="k">def</span><span class="w"> </span><span class="nf">copy</span><span class="p">(</span><span class="n">tensors</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">tensors</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="k">if</span> <span class="kc">None</span> <span class="ow">in</span> <span class="n">tensors</span><span class="p">:</span>
<span class="k">return</span> <span class="n">tensors</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">[</span><span class="n">tensor</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">tensor</span> <span class="ow">in</span> <span class="n">tensors</span><span class="p">]</span>
<span class="k">elif</span> <span class="n">tensors</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">tensors</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">tensors</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span>
<span class="n">shared_weight_prefixs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">tllm_weights</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">customized_dict</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;drafter&quot;</span><span class="p">:</span> <span class="s2">&quot;&quot;</span><span class="p">}</span>
<span class="k">if</span> <span class="n">speculative_model_dir</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="c1"># Single checkpoint for ModelOpt</span>
<span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">eagle_net</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">eagle_nets</span><span class="p">):</span>
<span class="n">check_and_update</span><span class="p">(</span><span class="n">eagle_net</span><span class="o">.</span><span class="n">drafter</span><span class="o">.</span><span class="n">fc</span><span class="p">,</span> <span class="p">{</span><span class="s2">&quot;fc&quot;</span><span class="p">:</span> <span class="s2">&quot;fc&quot;</span><span class="p">})</span>
<span class="n">check_and_update</span><span class="p">(</span><span class="n">eagle_net</span><span class="o">.</span><span class="n">drafter</span><span class="o">.</span><span class="n">vocab_embedding</span><span class="p">,</span>
<span class="p">{</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">:</span> <span class="s2">&quot;model&quot;</span><span class="p">})</span>
<span class="n">check_and_update</span><span class="p">(</span><span class="n">eagle_net</span><span class="o">.</span><span class="n">lm_head</span><span class="p">,</span> <span class="p">{</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">:</span> <span class="s2">&quot;&quot;</span><span class="p">})</span>
<span class="n">shared_weight_prefixs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="n">customized_dict</span><span class="p">[</span><span class="sa">f</span><span class="s1">&#39;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;eagle_module&#39;</span>
<span class="n">loader</span> <span class="o">=</span> <span class="n">ModelWeightsLoader</span><span class="p">(</span><span class="n">speculative_model_dir</span><span class="p">,</span> <span class="n">customized_dict</span><span class="p">)</span>
<span class="n">loader</span><span class="o">.</span><span class="n">update_key_mapping</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">for</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">()):</span>
<span class="k">if</span> <span class="nb">any</span><span class="p">([</span>
<span class="n">tllm_key</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="n">prefix</span><span class="p">)</span>
<span class="k">for</span> <span class="n">prefix</span> <span class="ow">in</span> <span class="n">shared_weight_prefixs</span>
<span class="p">]):</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">tllm_key</span><span class="p">,</span> <span class="n">preprocess</span><span class="o">=</span><span class="n">copy</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">tllm_key</span><span class="p">))</span>
<span class="n">loader</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">tllm_weights</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># Double checkpoint for HF</span>
<span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">eagle_net</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">eagle_nets</span><span class="p">):</span>
<span class="n">check_and_update</span><span class="p">(</span><span class="n">eagle_net</span><span class="o">.</span><span class="n">drafter</span><span class="o">.</span><span class="n">fc</span><span class="p">,</span> <span class="p">{</span><span class="s2">&quot;fc&quot;</span><span class="p">:</span> <span class="s2">&quot;fc&quot;</span><span class="p">})</span>
<span class="n">check_and_update</span><span class="p">(</span><span class="n">eagle_net</span><span class="o">.</span><span class="n">drafter</span><span class="o">.</span><span class="n">vocab_embedding</span><span class="p">,</span>
<span class="p">{</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">:</span> <span class="s2">&quot;&quot;</span><span class="p">})</span>
<span class="n">check_and_update</span><span class="p">(</span><span class="n">eagle_net</span><span class="o">.</span><span class="n">lm_head</span><span class="p">,</span> <span class="p">{</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">:</span> <span class="s2">&quot;&quot;</span><span class="p">})</span>
<span class="n">shared_weight_prefixs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="n">customized_dict</span><span class="p">[</span><span class="sa">f</span><span class="s1">&#39;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;&#39;</span>
<span class="c1"># Load base model</span>
<span class="n">base_loader</span> <span class="o">=</span> <span class="n">ModelWeightsLoader</span><span class="p">(</span><span class="n">hf_model_or_dir</span><span class="p">)</span>
<span class="n">base_loader</span><span class="o">.</span><span class="n">update_key_mapping</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">for</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">transformer</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">()):</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">base_loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;transformer.&quot;</span> <span class="o">+</span> <span class="n">tllm_key</span><span class="p">))</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">base_loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;lm_head.weight&quot;</span><span class="p">))</span>
<span class="c1"># for idx in range(args.num_eagle_layers):</span>
<span class="k">for</span> <span class="n">idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">):</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
<span class="n">base_loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;eagle_nets.</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">.lm_head.weight&quot;</span><span class="p">,</span>
<span class="n">preprocess</span><span class="o">=</span><span class="n">copy</span><span class="p">))</span>
<span class="c1"># Load eagle model</span>
<span class="n">eagle_loader</span> <span class="o">=</span> <span class="n">ModelWeightsLoader</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">speculative_model_dir</span><span class="p">),</span>
<span class="n">customized_dict</span><span class="p">)</span>
<span class="n">eagle_loader</span><span class="o">.</span><span class="n">update_key_mapping</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">for</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">model</span><span class="o">.</span><span class="n">eagle_nets</span><span class="o">.</span><span class="n">named_parameters</span><span class="p">()):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">tllm_key</span><span class="o">.</span><span class="n">endswith</span><span class="p">(</span><span class="s2">&quot;lm_head.weight&quot;</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">any</span><span class="p">([</span>
<span class="n">tllm_key</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="n">prefix</span><span class="p">)</span>
<span class="k">for</span> <span class="n">prefix</span> <span class="ow">in</span> <span class="n">shared_weight_prefixs</span>
<span class="p">]):</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
<span class="n">eagle_loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;eagle_nets.&quot;</span> <span class="o">+</span> <span class="n">tllm_key</span><span class="p">,</span>
<span class="n">preprocess</span><span class="o">=</span><span class="n">copy</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">tllm_weights</span><span class="o">.</span><span class="n">update</span><span class="p">(</span>
<span class="n">eagle_loader</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s2">&quot;eagle_nets.&quot;</span> <span class="o">+</span> <span class="n">tllm_key</span><span class="p">))</span>
<span class="n">base_loader</span><span class="o">.</span><span class="n">fill</span><span class="p">(</span><span class="n">tllm_weights</span><span class="p">)</span>
<span class="k">return</span> <span class="n">model</span></div>
</div>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on September 02, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/e81c50d">e81c50d</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>