TensorRT-LLMs/tensorrt_llm/serve/scripts/benchmark_utils.py
Pengyun Lin bac22ff7b5
[feat] support sharegpt downloading in benchmark_serving (#4578)
Signed-off-by: Pengyun Lin <81065165+LinPoly@users.noreply.github.com>
2025-05-30 17:27:53 +08:00

132 lines
4.2 KiB
Python

# Adopted from
# https://github.com/vllm-project/vllm/blob/200bbf92e8861e2458a6f90bca73f40cc3b1ad1f/benchmarks/benchmark_utils.py
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import math
import os
from typing import Any, Optional
import requests
from tqdm.asyncio import tqdm
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
metrics: dict[str, list],
extra_info: dict[str, Any]) -> list:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
"""
records = []
if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False):
return records
for name, benchmark_values in metrics.items():
record = {
"benchmark": {
"name": "benchmark",
"extra_info": {
"args": vars(args),
},
},
"model": {
"name": args.model,
},
"metric": {
"name": name,
"benchmark_values": benchmark_values,
"extra_info": extra_info,
},
}
tp = record["benchmark"]["extra_info"]["args"].get(
"tensor_parallel_size")
# Save tensor_parallel_size parameter if it's part of the metadata
if not tp and "tensor_parallel_size" in extra_info:
record["benchmark"]["extra_info"]["args"][
"tensor_parallel_size"] = extra_info["tensor_parallel_size"]
records.append(record)
return records
class InfEncoder(json.JSONEncoder):
def clear_inf(self, o: Any):
if isinstance(o, dict):
return {k: self.clear_inf(v) for k, v in o.items()}
elif isinstance(o, list):
return [self.clear_inf(v) for v in o]
elif isinstance(o, float) and math.isinf(o):
return "inf"
return o
def iterencode(self, o: Any, *args, **kwargs) -> Any:
return super().iterencode(self.clear_inf(o), *args, **kwargs)
def write_to_json(filename: str, records: list) -> None:
with open(filename, "w") as f:
json.dump(records, f, cls=InfEncoder)
def download_and_cache_file(url: str, path: Optional[str], name: str,
timeout: int) -> str:
# Adapted from
# https://github.com/sgl-project/sglang/blob/58f10679e1850fdc86046057c23bac5193156de9/python/sglang/bench_serving.py#L586
"""Read and cache a file from a url."""
# Check if the path is valid and if the file exists
if path is None or not os.path.exists(path):
raise ValueError("download_path is not provided or does not exist")
filename = os.path.join(path, name)
if is_file_valid_json(filename):
return filename
print(f"Downloading from {url} to {filename}")
# Stream the response to show the progress bar
response = requests.get(url, stream=True, timeout=timeout)
response.raise_for_status() # Check for request errors
# Total size of the file in bytes
total_size = int(response.headers.get("content-length", 0))
chunk_size = 1024 # Download in chunks of 1KB
# Use tqdm to display the progress bar
with open(filename, "wb") as f, tqdm(
desc=filename,
total=total_size,
unit="B",
unit_scale=True,
unit_divisor=1024,
) as bar:
for chunk in response.iter_content(chunk_size=chunk_size):
f.write(chunk)
bar.update(len(chunk))
return filename
def is_file_valid_json(path) -> bool:
# Adapted from
# https://github.com/sgl-project/sglang/blob/58f10679e1850fdc86046057c23bac5193156de9/python/sglang/bench_serving.py#L620
if not os.path.isfile(path):
return False
# TODO can fuse into the real file open later
try:
with open(path) as f:
json.load(f)
return True
except json.JSONDecodeError as e:
print(
f"{path} exists but json loading fails ({e=}), thus treat as invalid file"
)
return False