TensorRT-LLMs/cpp/tensorrt_llm/runtime/decodingOutput.cpp
Kaiyu Xie 66ef1df492
Update TensorRT-LLM (#1492)
* Update TensorRT-LLM

---------

Co-authored-by: Loki <lokravi@amazon.com>
2024-04-24 14:44:22 +08:00

88 lines
3.8 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/decodingOutput.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
using namespace tensorrt_llm::runtime;
void DecodingOutput::BeamHypotheses::empty(BufferManager& manager)
{
auto constexpr nvTokenIdType = TRTDataType<TokenIdType>::value;
auto constexpr nvSizeType = TRTDataType<SizeType>::value;
auto constexpr nvFloatType = TRTDataType<float>::value;
auto constexpr nvBoolType = TRTDataType<bool>::value;
outputIdsCBA = manager.emptyTensor(MemoryType::kGPU, nvTokenIdType);
sequenceLengthsCBA = manager.emptyTensor(MemoryType::kGPU, nvSizeType);
cumLogProbsCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
normedScoresCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
logProbsCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
minNormedScoresCBA = manager.emptyTensor(MemoryType::kGPU, nvFloatType);
numBeamsCBA = manager.emptyTensor(MemoryType::kGPU, nvSizeType);
batchDones = manager.emptyTensor(MemoryType::kGPU, nvBoolType);
}
void DecodingOutput::BeamHypotheses::reshape(SizeType batchSize, SizeType beamWidth, SizeType maxSequenceLength)
{
outputIdsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth, maxSequenceLength}));
sequenceLengthsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth}));
cumLogProbsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth}));
normedScoresCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth}));
logProbsCBA->reshape(ITensor::makeShape({batchSize, 2 * beamWidth, maxSequenceLength}));
minNormedScoresCBA->reshape(ITensor::makeShape({batchSize}));
numBeamsCBA->reshape(ITensor::makeShape({batchSize}));
batchDones->reshape(ITensor::makeShape({batchSize}));
}
void DecodingOutput::BeamHypotheses::init(BufferManager& manager, TokenIdType endId)
{
kernels::invokeFill(*outputIdsCBA, endId, manager.getStream());
manager.setZero(*sequenceLengthsCBA);
manager.setZero(*cumLogProbsCBA);
manager.setZero(*normedScoresCBA);
manager.setZero(*logProbsCBA);
manager.setZero(*minNormedScoresCBA);
manager.setZero(*numBeamsCBA);
manager.setZero(*batchDones);
}
DecodingOutput::BeamHypotheses DecodingOutput::BeamHypotheses::slice(SizeType batchIndex, SizeType size) const
{
DecodingOutput::BeamHypotheses bh{};
bh.outputIdsCBA = ITensor::slice(outputIdsCBA, batchIndex, size);
bh.sequenceLengthsCBA = ITensor::slice(sequenceLengthsCBA, batchIndex, size);
bh.cumLogProbsCBA = ITensor::slice(cumLogProbsCBA, batchIndex, size);
bh.normedScoresCBA = ITensor::slice(normedScoresCBA, batchIndex, size);
bh.logProbsCBA = ITensor::slice(logProbsCBA, batchIndex, size);
bh.minNormedScoresCBA = ITensor::slice(minNormedScoresCBA, batchIndex, size);
bh.numBeamsCBA = ITensor::slice(numBeamsCBA, batchIndex, size);
bh.batchDones = ITensor::slice(batchDones, batchIndex, size);
return bh;
}
void DecodingOutput::BeamHypotheses::release()
{
outputIdsCBA->release();
sequenceLengthsCBA->release();
cumLogProbsCBA->release();
normedScoresCBA->release();
logProbsCBA->release();
minNormedScoresCBA->release();
numBeamsCBA->release();
batchDones->release();
}