mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
148 lines
3.7 KiB
C++
148 lines
3.7 KiB
C++
/*
|
|
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include <condition_variable>
|
|
#include <exception>
|
|
#include <functional>
|
|
#include <future>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <stdexcept>
|
|
#include <thread>
|
|
#include <type_traits>
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
class WorkerPool
|
|
{
|
|
public:
|
|
explicit WorkerPool(std::size_t numWorkers = 1, int device = -1)
|
|
: mNumWorkers(numWorkers)
|
|
, mShutdown(false)
|
|
, mDevice(device)
|
|
{
|
|
initThreads();
|
|
}
|
|
|
|
~WorkerPool()
|
|
{
|
|
shutdown();
|
|
}
|
|
|
|
template <typename Function, typename Return = std::invoke_result_t<std::decay_t<Function>>>
|
|
std::future<Return> enqueue(Function&& task)
|
|
{
|
|
if (mShutdown)
|
|
{
|
|
throw std::runtime_error("WorkerPool is shutdown cannot enqueue new tasks");
|
|
}
|
|
|
|
auto const taskPromise = std::make_shared<std::promise<Return>>();
|
|
std::lock_guard<std::mutex> lock(mTasksMutex);
|
|
mTasks.push(
|
|
[task = std::forward<Function>(task), taskPromise]()
|
|
{
|
|
try
|
|
{
|
|
if constexpr (std::is_void_v<Return>)
|
|
{
|
|
task();
|
|
taskPromise->set_value();
|
|
}
|
|
else
|
|
{
|
|
taskPromise->set_value(task());
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
taskPromise->set_exception(std::current_exception());
|
|
}
|
|
});
|
|
mTasksCv.notify_one();
|
|
return taskPromise->get_future();
|
|
}
|
|
|
|
private:
|
|
std::size_t mNumWorkers;
|
|
|
|
std::queue<std::function<void()>> mTasks;
|
|
mutable std::mutex mTasksMutex;
|
|
std::condition_variable mTasksCv;
|
|
|
|
std::atomic<bool> mShutdown = false;
|
|
|
|
std::vector<std::shared_ptr<std::thread>> mThreads;
|
|
|
|
int mDevice{-1};
|
|
|
|
void shutdown()
|
|
{
|
|
if (mShutdown)
|
|
{
|
|
return;
|
|
}
|
|
mShutdown = true;
|
|
mTasksCv.notify_all();
|
|
for (std::size_t i = 0; i < mThreads.size(); ++i)
|
|
{
|
|
mThreads.at(i)->join();
|
|
}
|
|
}
|
|
|
|
void initThreads()
|
|
{
|
|
for (std::size_t i = 0; i < mNumWorkers; ++i)
|
|
{
|
|
mThreads.push_back(std::make_shared<std::thread>(std::thread(&WorkerPool::doWork, this)));
|
|
}
|
|
}
|
|
|
|
void doWork()
|
|
{
|
|
if (mDevice >= 0)
|
|
{
|
|
TLLM_CUDA_CHECK(cudaSetDevice(mDevice));
|
|
}
|
|
else
|
|
{
|
|
TLLM_LOG_WARNING("WorkerPool did not set cuda device");
|
|
}
|
|
while (!mShutdown)
|
|
{
|
|
std::function<void()> task;
|
|
{
|
|
std::unique_lock<std::mutex> lock(mTasksMutex);
|
|
mTasksCv.wait(lock, [this]() { return !mTasks.empty() || mShutdown; });
|
|
if (mTasks.empty())
|
|
{
|
|
continue;
|
|
}
|
|
task = mTasks.front();
|
|
mTasks.pop();
|
|
}
|
|
|
|
task();
|
|
}
|
|
}
|
|
};
|
|
} // namespace tensorrt_llm::runtime
|