TensorRT-LLMs/tensorrt_llm/_torch/utils.py
Dom Brown 8709fe8b53
chore: bump version to 0.19.0 (#3598) (#3841)
test: add test cases for 0.19 release (#3608)

* fix test name



* add quickstart test for nemotron-ultra



* add rcca multi-node test case for deepseek-v3



* add rcca info



---------




squash (#3642)



fix: nvbugs/5187237: fix deterministic mode crash (#3448)

* nvbugs/5187237 nvbugs/5112075: fix deterministic mode error

* remove waive


* Revert "remove waive"

This reverts commit 0bf5486d19906d692bfb7a6262333c296b0087ac.



* revert ar fusion



---------



update fp8 doc (#3647)




tests: change qa perf test to trtllm-bench (#3619)




 fix: FP8 quantized lm_head (NvBug 5214229) (#3567)



infra: Add PR approval protection for the release branch (#3634)



fix: nvbugs/5231298: pytorch allreduce issue (#3673)



Fix: nvbugs/5222698 variable not defined (#3630)

* Fix: nvbugs/5222698 variable not defined



* Tidy code



---------



test:sync waives.txt from main branch by disabling test_perf/gpt_350m-cppmanager case (#3685)



test:restore fp8 kv cache testing for L0 (#3671)



doc: Update DeepSeek perf docs (#3693)

* Update DeepSeek perf docs



* update



* Apply suggestions from code review




---------




tests: waive test_llm_multi_node (#3664)



fix: update test_user_buffers_mm_add_prologue atol (#3711)



Fix: cherry-pick hmac encryption from main branch (#3635)

* security fix cherry-pick changes from main



* fix hmac in remote mpi session (#3649)



---------





Un-waive DS-V3-Lite tests. (#3621)



fix: FP8 kv accuracy (#3675)

* fix FP8 kv accuracy



* update doc



---------



Fix script options for engines. (#3622)



unwaive multi-node test (#3721)



chore : Split more tests out of gpt tests (#3524) (#3674)



doc:add torch examples link into torch backend documentation (#3749)




test: Get Eagle tests working (#3593) (#3722)




Waive L0 test (#3756)



waive failed case in perf test, change default max_batch_size to 512 and write config.json to output log (#3656)





Update ds v3 parameters in stress test. (#3676)

waive gemma on L20 (#3766)



https://nvbugs/5141291: Fix convert.py script for Qwen model. (#3758)

Include Qwen2VLDecoderLayer in the smooth_qwen2_model function.



fix: PP4 fixes and cleanup (#3688)




remove benchmark test list (#3643)



skip disagg deepseek test if sm!=90 (#3720)



test: skip failed cases on B200 (#3710)

* add skip condition to tests



* fix error



---------



test: [nvbug: 5234494] skip_pre_ada for fp8 cases (#3718)

* skip_pre_ada for fp8 cases



* update



* update after rebase



---------



add know issue to deepseek doc. (#3800)



Fix ModelOpt Mixtral AWQ OOM (#3714) (#3761)




Waive L0 tests (#3826)



fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)

* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.



* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.



---------



[doc] Better document for Draft-Target-Model (DTM) speculative decoding (#3797)




Fix pre-commit



Fix again



Address some review comments for the MI

Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
Co-authored-by: Zhanrui Sun <184402041+ZhanruiSunCh@users.noreply.github.com>
2025-04-29 16:57:22 +08:00

211 lines
5.9 KiB
Python

import contextlib
import os
import threading
from dataclasses import dataclass
from enum import Enum
from typing import Dict, List
import torch
from tensorrt_llm._utils import TensorWrapper, convert_to_torch_tensor
from .pipeline_interface import PipelineInterface
is_torch_compiling_flag = False
aux_stream_name_list = ['Attention', 'MoeShared', 'MoeChunkingOverlap']
AuxStreamType = Enum(
'AuxStreamType',
aux_stream_name_list,
)
EventType = Enum(
'EventType',
['Main', *aux_stream_name_list],
start=0,
)
def set_torch_compiling(enable: bool):
global is_torch_compiling_flag
is_torch_compiling_flag = enable
def is_torch_compiling() -> bool:
global is_torch_compiling_flag
return is_torch_compiling_flag
_global_attrs = threading.local()
def get_global_attrs():
return _global_attrs
_model_extra_attrs = threading.local()
def get_model_extra_attrs():
return getattr(_model_extra_attrs, 'attrs', None)
@contextlib.contextmanager
def model_extra_attrs(attrs: Dict):
old_attrs = getattr(_model_extra_attrs, 'attrs', None)
_model_extra_attrs.attrs = attrs
try:
yield
finally:
_model_extra_attrs.attrs = old_attrs
def with_model_extra_attrs(get_attrs):
def decorator(func):
def wrapper(self, *args, **kwargs):
with model_extra_attrs(get_attrs(self)):
return func(self, *args, **kwargs)
return wrapper
return decorator
def make_weak_ref(x):
if isinstance(x, torch.Tensor):
return convert_to_torch_tensor(
TensorWrapper(x.data_ptr(), x.dtype, x.shape)) if x.is_cuda else x
elif isinstance(x, tuple):
return tuple(make_weak_ref(i) for i in x)
elif isinstance(x, list):
return [make_weak_ref(i) for i in x]
elif isinstance(x, dict):
return {k: make_weak_ref(v) for k, v in x.items()}
elif isinstance(x, (int, float, bool)):
return x
elif isinstance(x, PipelineInterface):
return tuple(make_weak_ref(tensor) for tensor in x)
else:
raise TypeError(f"Invalid type {type(x)} to make weak ref")
@dataclass
class Fp4QuantizedTensor:
fp4_tensor: torch.Tensor
scaling_factor: torch.Tensor
_disable_fp4_allgather = os.getenv("TLLM_DISABLE_FP4_ALLGATHER", "0") == "1"
def disable_fp4_allgather():
return _disable_fp4_allgather
def swizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
# SF layout [num_m_tiles, num_k_tiles, 32 (m_tile column major), 4 (m_tile column major), 4(k_tile)]
sf_full = torch.zeros(num_m_tiles * 32 * 4,
num_k_tiles * 4,
dtype=sf.dtype,
device=sf.device)
sf_full[:row, :(col //
scaling_vector_size)] = sf[:row, :(col //
scaling_vector_size)]
sf_full_reshaped = sf_full.view(num_m_tiles, 4, 32, num_k_tiles, 4)
sf_full_swizzle = sf_full_reshaped.transpose(1, 3)
sf_swizzle = sf_full_swizzle.reshape(-1)
return sf_swizzle
def unswizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
# SF layout [num_m_tiles, num_k_tiles, 32 (m_tile column major), 4 (m_tile column major), 4(k_tile)]
sf_reshaped = sf.view(num_m_tiles, num_k_tiles, 32, 4, 4)
sf_unswizzle = sf_reshaped.transpose(1, 3)
sf_unswizzle = sf_unswizzle.reshape(num_m_tiles * 32 * 4, num_k_tiles * 4)
sf_unswizzle_sliced = sf_unswizzle[:row, :(col // scaling_vector_size)]
return sf_unswizzle_sliced.contiguous()
def reswizzle_sf(sf: torch.Tensor,
row: int,
col: int,
scaling_vector_size: int = 16):
factor = scaling_vector_size * 4
num_m_tiles = (row + 128 - 1) // 128
num_k_tiles = (col + factor - 1) // factor
partition_size = num_m_tiles * num_k_tiles * 32 * 4 * 4
num_partitions = sf.numel() // partition_size
sf_reshaped = sf.view(num_partitions, num_m_tiles, num_k_tiles, 32, 4, 4)
sf_unswizzle = sf_reshaped.transpose(2, 4)
sf_unswizzle = sf_unswizzle.reshape(num_partitions, num_m_tiles * 32 * 4,
num_k_tiles * 4)
total_rows = num_partitions * row
num_m_tiles_out = (total_rows + 128 - 1) // 128
sf_out = torch.zeros(
num_m_tiles_out,
4,
32,
num_k_tiles,
4,
dtype=sf.dtype,
device=sf.device,
)
sf_out_reshaped = sf_out.view(num_m_tiles_out * 32 * 4, num_k_tiles * 4)
sf_out_reshaped[:total_rows] = sf_unswizzle[:, :row].reshape(total_rows, -1)
sf_out_swizzle = sf_out.transpose(1, 3).reshape(-1)
return sf_out_swizzle
def next_positive_power_of_2(x: int) -> int:
if x < 1:
return 1
return 1 << (x - 1).bit_length()
def last_positive_power_of_2(x: int) -> int:
next = next_positive_power_of_2(x)
if next == x:
return next
return next // 2
def nearest_in_buckets(x: int, buckets: List[int]) -> int:
return min(max(next_positive_power_of_2(x), buckets[0]), buckets[-1])
def get_power_of_2_num_tokens_buckets(max_num_tokens) -> List[int]:
max_num_tokens = next_positive_power_of_2(max_num_tokens)
num_token_buckets = []
m = max_num_tokens
while m >= 1:
num_token_buckets.append(m)
m //= 2
return tuple(num_token_buckets)
def get_last_power_of_2_num_tokens_buckets(max_num_tokens) -> List[int]:
max_num_tokens = last_positive_power_of_2(max_num_tokens)
num_token_buckets = []
m = max_num_tokens
while m >= 1:
num_token_buckets.append(m)
m //= 2
return num_token_buckets