mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
339 lines
13 KiB
Python
339 lines
13 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||
# SPDX-License-Identifier: Apache-2.0
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""Module test_mistral test mistral examples."""
|
||
import multiprocessing
|
||
import os
|
||
|
||
import defs.ci_profiler
|
||
import psutil
|
||
import pytest
|
||
from defs.common import (convert_weights, quantize_data,
|
||
test_llm_torch_multi_lora_support,
|
||
test_multi_lora_support, venv_check_call)
|
||
from defs.conftest import (get_device_count, get_sm_version,
|
||
skip_post_blackwell, skip_pre_ada)
|
||
from defs.trt_test_alternative import check_call
|
||
|
||
# skip trt flow cases on post-Blackwell-Ultra
|
||
if get_sm_version() >= 103:
|
||
pytest.skip(
|
||
"TRT workflow tests are not supported on post Blackwell-Ultra architecture",
|
||
allow_module_level=True)
|
||
|
||
|
||
def get_optimal_jobs():
|
||
cpu_count = multiprocessing.cpu_count()
|
||
available_memory = psutil.virtual_memory().available / (1024 * 1024 * 1024)
|
||
memory_per_job = 4
|
||
memory_based_jobs = int(available_memory / memory_per_job)
|
||
system_load = psutil.getloadavg()[0] / cpu_count
|
||
if system_load > 0.7:
|
||
cpu_factor = 0.5
|
||
else:
|
||
cpu_factor = 0.75
|
||
cpu_based_jobs = max(1, int(cpu_count * cpu_factor))
|
||
optimal_jobs = max(1, min(cpu_based_jobs, memory_based_jobs))
|
||
return optimal_jobs
|
||
|
||
|
||
@skip_post_blackwell #nvbug 5298661
|
||
@pytest.mark.parametrize(
|
||
"run_type",
|
||
['inference', 'summarization_long', 'chunked_summarization_long'])
|
||
@pytest.mark.parametrize("max_attention_window", [4096],
|
||
ids=['max_attention_window_size_4096'])
|
||
@pytest.mark.parametrize("data_type", ['float16'])
|
||
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
||
indirect=True)
|
||
def test_llm_mistral_v1_1gpu(run_type, data_type, llama_example_root,
|
||
max_attention_window, llm_mistral_model_root,
|
||
llm_datasets_root, llm_rouge_root, llm_venv,
|
||
cmodel_dir, engine_dir):
|
||
|
||
print("Build engines...")
|
||
if run_type == "summarization_long":
|
||
model_name = 'mistral-{}'.format(run_type)
|
||
model_dir = convert_weights(llm_venv=llm_venv,
|
||
example_root=llama_example_root,
|
||
cmodel_dir=cmodel_dir,
|
||
model=model_name,
|
||
model_path=llm_mistral_model_root,
|
||
data_type=data_type)
|
||
build_cmd = [
|
||
"trtllm-build",
|
||
f"--checkpoint_dir={model_dir}",
|
||
f"--output_dir={engine_dir}",
|
||
"--max_input_len",
|
||
"6400",
|
||
f"--max_batch_size={1}",
|
||
"--max_seq_len",
|
||
"6528",
|
||
f"--gpt_attention_plugin={data_type}",
|
||
f"--gemm_plugin={data_type}",
|
||
"--context_fmha=enable",
|
||
"--use_paged_context_fmha=disable",
|
||
]
|
||
|
||
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
||
|
||
print("Run long context summarize...")
|
||
# using shorter input length since A30 doesn't have enough device memory.
|
||
summary_cmd = [
|
||
f"{llama_example_root}/summarize_long.py",
|
||
"--test_trt_llm",
|
||
"--test_hf",
|
||
"--hf_model_location",
|
||
f"{llm_mistral_model_root}",
|
||
"--data_type",
|
||
"fp16",
|
||
f"--engine_dir={engine_dir}",
|
||
f"--max_attention_window_size={max_attention_window}",
|
||
"--max_ite",
|
||
"3",
|
||
"--max_input_len",
|
||
"6400",
|
||
"--tensorrt_llm_rouge1_threshold",
|
||
"90",
|
||
"--check_accuracy",
|
||
]
|
||
# https://nvbugs/4658787
|
||
# WAR before summarize_long.py can work offline
|
||
env = {"HF_DATASETS_OFFLINE": "0"}
|
||
venv_check_call(llm_venv, summary_cmd, env=env)
|
||
|
||
# multi block + sliding window attention tests.
|
||
build_cmd = [
|
||
"trtllm-build",
|
||
f"--checkpoint_dir={model_dir}",
|
||
f"--output_dir={engine_dir}",
|
||
"--max_input_len",
|
||
"6400",
|
||
"--max_seq_len",
|
||
"6528",
|
||
f"--gpt_attention_plugin={data_type}",
|
||
f"--gemm_plugin={data_type}",
|
||
"--use_paged_context_fmha=disable",
|
||
]
|
||
|
||
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
||
|
||
print("Run long context summarize with multi_block_mode enabled...")
|
||
# using shorter input length since A30 doesn't have enough device memory.
|
||
summary_cmd = [
|
||
f"{llama_example_root}/summarize_long.py", "--test_trt_llm",
|
||
"--test_hf", "--hf_model_location", f"{llm_mistral_model_root}",
|
||
"--data_type", "fp16", f"--engine_dir={engine_dir}",
|
||
f"--max_attention_window_size={max_attention_window}", "--max_ite",
|
||
"3", "--max_input_len", "6400", "--tensorrt_llm_rouge1_threshold",
|
||
"90", "--check_accuracy"
|
||
]
|
||
venv_check_call(llm_venv, summary_cmd, env=env)
|
||
|
||
elif run_type == "chunked_summarization_long":
|
||
model_name = 'mistral-{}'.format(run_type)
|
||
model_dir = convert_weights(llm_venv=llm_venv,
|
||
example_root=llama_example_root,
|
||
cmodel_dir=cmodel_dir,
|
||
model=model_name,
|
||
model_path=llm_mistral_model_root,
|
||
data_type=data_type)
|
||
build_cmd = [
|
||
"trtllm-build",
|
||
f"--checkpoint_dir={model_dir}",
|
||
f"--output_dir={engine_dir}",
|
||
"--max_input_len",
|
||
"6400",
|
||
"--max_num_tokens=2048",
|
||
"--use_paged_context_fmha=enable",
|
||
f"--max_batch_size={1}",
|
||
"--max_seq_len",
|
||
"6528",
|
||
f"--gpt_attention_plugin={data_type}",
|
||
f"--gemm_plugin={data_type}",
|
||
"--context_fmha=enable",
|
||
]
|
||
|
||
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
||
|
||
print("Run long context summarize...")
|
||
summary_cmd = [
|
||
f"{llama_example_root}/../../../summarize.py",
|
||
"--eval_task=summarize_long", "--test_trt_llm", "--test_hf",
|
||
"--hf_model_dir", f"{llm_mistral_model_root}", "--data_type",
|
||
"fp16", f"--engine_dir={engine_dir}",
|
||
f"--max_attention_window_size={max_attention_window}",
|
||
"--max_input_length", "6400", "--tensorrt_llm_rouge1_threshold",
|
||
"21", "--check_accuracy", "--enable_chunked_context"
|
||
]
|
||
# https://nvbugs/4658787
|
||
# WAR before summarize_long.py can work offline
|
||
env = {"HF_DATASETS_OFFLINE": "0"}
|
||
venv_check_call(llm_venv, summary_cmd, env=env)
|
||
|
||
|
||
@skip_pre_ada
|
||
@pytest.mark.parametrize("llm_mistral_model_root", ['komt-mistral-7b-v1'],
|
||
indirect=True)
|
||
@pytest.mark.parametrize("llm_lora_model_root", ['komt-mistral-7b-v1-lora'],
|
||
indirect=True)
|
||
def test_llm_mistral_lora_1gpu(llama_example_root, llm_mistral_model_root,
|
||
llm_datasets_root, llm_venv, engine_dir,
|
||
llm_lora_model_root, qcache_dir):
|
||
"run mistral lora test on 1gpu"
|
||
print("Quantization...")
|
||
model_dir = quantize_data(
|
||
llm_venv,
|
||
llama_example_root,
|
||
model_dir=llm_mistral_model_root,
|
||
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
||
dtype="float16",
|
||
qformat="fp8",
|
||
quantize_dir=qcache_dir,
|
||
calib_size=512,
|
||
kv_cache_dtype="fp8")
|
||
|
||
print("Build engines...")
|
||
build_cmd = [
|
||
"trtllm-build",
|
||
f"--checkpoint_dir={model_dir}",
|
||
f"--output_dir={engine_dir}",
|
||
f"--lora_dir={llm_lora_model_root}",
|
||
"--lora_plugin=auto",
|
||
"--gemm_plugin=auto",
|
||
"--max_batch_size=8",
|
||
"--max_input_len=32256",
|
||
"--max_seq_len=33280",
|
||
"--use_paged_context_fmha=enable",
|
||
]
|
||
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
||
|
||
input_text = "[INST]오늘은 날씨가 아주 좋다 내가 공원에 갔을 때 [/INST]"
|
||
|
||
run_cmd = [
|
||
f"{llama_example_root}/../../../run.py",
|
||
f"--input_text={input_text}",
|
||
f"--tokenizer_dir={llm_mistral_model_root}",
|
||
f"--engine_dir={engine_dir}",
|
||
"--max_output_len=1024",
|
||
"--max_attention_window_size=4096",
|
||
"--lora_task_uids=0",
|
||
"--temperature=0.8",
|
||
"--top_p=0.8",
|
||
"--top_k=100",
|
||
"--random_seed=0",
|
||
]
|
||
|
||
venv_check_call(llm_venv, run_cmd)
|
||
|
||
|
||
@skip_pre_ada
|
||
@pytest.mark.skip_less_device_memory(80000)
|
||
@pytest.mark.parametrize("mistral_nemo_minitron_model_root",
|
||
['Mistral-NeMo-Minitron-8B-Instruct'],
|
||
indirect=True)
|
||
def test_mistral_nemo_minitron_fp8_with_bf16_lora(
|
||
llama_example_root,
|
||
mistral_nemo_minitron_model_root,
|
||
llm_datasets_root,
|
||
qcache_dir,
|
||
llm_rouge_root,
|
||
llm_venv,
|
||
engine_dir,
|
||
num_beams=1,
|
||
):
|
||
"Run Mistral Nemo Minitron 8B with multiple pseudo LoRAs."
|
||
|
||
# Quantize the base model to fp8.
|
||
qmodel_dir = quantize_data(
|
||
llm_venv,
|
||
llama_example_root,
|
||
model_dir=mistral_nemo_minitron_model_root,
|
||
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
||
dtype="bfloat16",
|
||
qformat="fp8",
|
||
quantize_dir=qcache_dir,
|
||
calib_size=32,
|
||
kv_cache_dtype="fp8")
|
||
|
||
test_multi_lora_support(
|
||
hf_model_dir=mistral_nemo_minitron_model_root,
|
||
tllm_ckpt_dir=qmodel_dir,
|
||
engine_dir=engine_dir,
|
||
llm_venv=llm_venv,
|
||
example_root=llama_example_root,
|
||
num_loras=2,
|
||
lora_rank=8,
|
||
target_hf_modules=["q_proj", "k_proj", "v_proj"],
|
||
target_trtllm_modules=["attn_q", "attn_k", "attn_v"],
|
||
zero_lora_weights=True,
|
||
)
|
||
|
||
|
||
@skip_pre_ada
|
||
@pytest.mark.skip_less_device_memory(80000)
|
||
@pytest.mark.parametrize("llm_mistral_model_root", [
|
||
'mistral-7b-v0.1',
|
||
'mistral-nemo-instruct-2407',
|
||
],
|
||
indirect=True)
|
||
def test_mistral_with_bf16_lora_torch(llama_example_root, llm_datasets_root,
|
||
qcache_dir_without_install_package,
|
||
llm_venv, engine_dir,
|
||
llm_mistral_model_root):
|
||
"""Run Mistral models with multiple dummy LoRAs using LLM-API Torch backend."""
|
||
|
||
if "mistral-nemo-instruct-2407" in llm_mistral_model_root.lower():
|
||
tensor_parallel_size = 2
|
||
if get_device_count() < 2:
|
||
pytest.skip(
|
||
"Skipping: mistral-nemo-instruct-2407 model requires 2 GPUs")
|
||
else:
|
||
tensor_parallel_size = 1
|
||
|
||
expected_outputs = {
|
||
'mistral-7b-v0.1': [
|
||
"I hope you’re doing well. I’m doing well. I’m doing well. I’m doing well. I’m doing",
|
||
"\n\nSeattle, WA Weather Forecast. Today's weather in Seattle, WA. 59°F. 15°",
|
||
"\n\nNo, it is not ok to fill diesel in a petrol car. Diesel is a heavier fuel than petrol and will",
|
||
"\n\nYes, you can check the top 5 trending songs on Spotify. To do this, go to the Spotify website and sign",
|
||
"\n\nParis is the capital of France.\n\nWhat is the capital of the United States?\n\nWashington, D.C."
|
||
],
|
||
'mistral-nemo-instruct-2407': [
|
||
" I'm doing fine, thanks for asking! How can I assist you today? Let me know if you have any questions or just want to chat!",
|
||
" Seattle, WA is currently experiencing a temperature of 55°F (13°C) with a chance of rain. The weather is typically cloud",
|
||
" I have a 2005 Honda City. I have filled diesel in my car by mistake. I have driven the car for about 1",
|
||
" I'm using python and I've tried using the spotipy library but I can't seem to get it to work. I'm not sure if it",
|
||
" Paris\n\nThe capital of France is Paris. It is the largest city in the country and is known for its iconic landmarks such as the Eiffel"
|
||
],
|
||
}
|
||
|
||
print(f"Testing {llm_mistral_model_root} with LLM-API Torch backend...")
|
||
|
||
defs.ci_profiler.start("test_llm_torch_multi_lora_support")
|
||
model_name = os.path.basename(llm_mistral_model_root).lower()
|
||
test_llm_torch_multi_lora_support(
|
||
hf_model_dir=llm_mistral_model_root,
|
||
llm_venv=llm_venv,
|
||
num_loras=2,
|
||
lora_rank=8,
|
||
target_hf_modules=["q_proj", "k_proj", "v_proj"],
|
||
zero_lora_weights=True,
|
||
tensor_parallel_size=tensor_parallel_size,
|
||
expected_outputs=expected_outputs[model_name])
|
||
defs.ci_profiler.stop("test_llm_torch_multi_lora_support")
|
||
print(
|
||
f"test_llm_torch_multi_lora_support: {defs.ci_profiler.elapsed_time_in_sec('test_llm_torch_multi_lora_support')} sec"
|
||
)
|