TensorRT-LLMs/cpp/tensorrt_llm/kernels/selectiveScan.cu
Kaiyu Xie 0ab9d17a59
Update TensorRT-LLM (#1055)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-02-06 18:38:07 +08:00

571 lines
24 KiB
Plaintext

/*
* Adapted from https://github.com/state-spaces/mamba/blob/main/csrc/selective_scan/selective_scan_fwd_kernel.cuh
* Copyright (c) 2023, Tri Dao.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Not a contribution
* Changes made by NVIDIA CORPORATION & AFFILIATES or otherwise documented as
* NVIDIA-proprietary are not a contribution and subject to the following terms and conditions:
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: LicenseRef-NvidiaProprietary
*
* NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
* property and proprietary rights in and to this material, related
* documentation and any modifications thereto. Any use, reproduction,
* disclosure or distribution of this material and related documentation
* without an express license agreement from NVIDIA CORPORATION or
* its affiliates is strictly prohibited.
*/
#include <cuda_runtime_api.h>
#ifdef ENABLE_FP8
#include <cuda_fp8.h>
#endif
#include <cub/block/block_load.cuh>
#include <cub/block/block_scan.cuh>
#include <cub/block/block_store.cuh>
#include "selectiveScan.h"
#include "selectiveScanCommon.h"
namespace tensorrt_llm
{
namespace kernels
{
template <int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
bool kHasZ_, typename input_t_, typename weight_t_>
struct Selective_Scan_fwd_kernel_traits
{
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
static constexpr int kNItems = kNItems_;
static constexpr int kNRows = kNRows_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
static_assert(kNItems % kNElts == 0);
static constexpr int kNLoads = kNItems / kNElts;
static constexpr bool kIsEvenLen = kIsEvenLen_;
static constexpr bool kIsVariableB = kIsVariableB_;
static constexpr bool kIsVariableC = kIsVariableC_;
static constexpr bool kHasZ = kHasZ_;
static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using scan_t = float2;
using scan_t_s = float;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
!kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
static constexpr int kSmemIOSize
= std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockLoadVecT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
sizeof(typename BlockStoreT::TempStorage), sizeof(typename BlockStoreVecT::TempStorage)});
static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
};
template <typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks) void selective_scan_fwd_kernel(
SSMParamsBase params)
{
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
constexpr bool kHasZ = Ktraits::kHasZ;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNItems = Ktraits::kNItems;
constexpr int kNRows = Ktraits::kNRows;
constexpr bool kDirectIO = Ktraits::kDirectIO;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
using scan_t = typename Ktraits::scan_t;
using scan_t_s = typename Ktraits::scan_t_s;
// Shared memory.
extern __shared__ char smem_[];
// cast to lvalue reference of expected type
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(
smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
// weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
// weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
scan_t* smem_running_prefix = reinterpret_cast<scan_t*>(smem_ + Ktraits::kSmemSize);
const int batch_id = blockIdx.x;
const int dim_id = blockIdx.y;
const int group_id = dim_id / (params.dim_ngroups_ratio);
input_t* u = reinterpret_cast<input_t*>(params.u_ptr) + batch_id * params.u_batch_stride
+ dim_id * kNRows * params.u_d_stride;
input_t* delta = reinterpret_cast<input_t*>(params.delta_ptr) + batch_id * params.delta_batch_stride
+ dim_id * kNRows * params.delta_d_stride;
weight_t* A = reinterpret_cast<weight_t*>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
weight_t* B = reinterpret_cast<weight_t*>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
input_t* Bvar = reinterpret_cast<input_t*>(params.B_ptr) + batch_id * params.B_batch_stride
+ group_id * params.B_group_stride;
weight_t* C = reinterpret_cast<weight_t*>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
input_t* Cvar = reinterpret_cast<input_t*>(params.C_ptr) + batch_id * params.C_batch_stride
+ group_id * params.C_group_stride;
scan_t_s* x = reinterpret_cast<scan_t_s*>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.dstate;
float D_val[kNRows] = {0};
if (params.D_ptr != nullptr)
{
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
D_val[r] = reinterpret_cast<float*>(params.D_ptr)[dim_id * kNRows + r];
}
}
float delta_bias[kNRows] = {0};
if (params.delta_bias_ptr != nullptr)
{
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
delta_bias[r] = reinterpret_cast<float*>(params.delta_bias_ptr)[dim_id * kNRows + r];
}
}
// for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
// smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
// smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
// }
constexpr int kChunkSize = kNThreads * kNItems;
for (int chunk = 0; chunk < params.n_chunks; ++chunk)
{
input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
__syncthreads();
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
if constexpr (!kDirectIO)
{
if (r > 0)
{
__syncthreads();
}
}
load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
if constexpr (!kDirectIO)
{
__syncthreads();
}
load_input<Ktraits>(
delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
}
u += kChunkSize;
delta += kChunkSize;
float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
#pragma unroll
for (int i = 0; i < kNItems; ++i)
{
float u_val = float(u_vals[r][i]);
delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
if (params.delta_softplus)
{
delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
}
delta_u_vals[r][i] = delta_vals[r][i] * u_val;
out_vals[r][i] = D_val[r] * u_val;
}
}
__syncthreads();
for (int state_idx = 0; state_idx < params.dstate; ++state_idx)
{
weight_t A_val[kNRows];
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E
A_val[r] *= kLog2e;
}
// This variable holds B * C if both B and C are constant across seqlen. If only B varies
// across seqlen, this holds C. If only C varies across seqlen, this holds B.
// If both B and C vary, this is unused.
weight_t BC_val[kNRows];
weight_t B_vals[kNItems], C_vals[kNItems];
if constexpr (kIsVariableB)
{
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals, smem_load_weight,
params.seqlen - chunk * kChunkSize);
if constexpr (!kIsVariableC)
{
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
}
}
}
if constexpr (kIsVariableC)
{
auto& smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals, smem_load_weight_C,
params.seqlen - chunk * kChunkSize);
if constexpr (!kIsVariableB)
{
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
}
}
}
if constexpr (!kIsVariableB && !kIsVariableC)
{
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride]
* C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
}
}
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
if (r > 0)
{
__syncthreads();
} // Scan could be using the same smem
scan_t thread_data[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i)
{
thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
!kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
if constexpr (!Ktraits::kIsEvenLen)
{ // So that the last state is correct
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize)
{
thread_data[i] = make_float2(1.f, 0.f);
}
}
}
// Initialize running total
scan_t running_prefix;
// If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE]
: make_float2(1.f, 0.f);
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] :
// make_float2(1.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op);
// There's a syncthreads in the scan op, so we don't need to sync here.
// Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
if (threadIdx.x == 0)
{
smem_running_prefix[state_idx] = prefix_op.running_prefix;
if (chunk == params.n_chunks - 1)
{
x[r * params.dstate + state_idx] = prefix_op.running_prefix.y;
}
}
#pragma unroll
for (int i = 0; i < kNItems; ++i)
{
const weight_t C_val
= !kIsVariableC ? BC_val[r] : (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
out_vals[r][i] += thread_data[i].y * C_val;
}
}
}
input_t* out = reinterpret_cast<input_t*>(params.out_ptr) + batch_id * params.out_batch_stride
+ dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
if constexpr (kHasZ)
{
input_t* z = reinterpret_cast<input_t*>(params.z_ptr) + batch_id * params.z_batch_stride
+ dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
input_t z_vals[kNItems];
__syncthreads();
load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
#pragma unroll
for (int i = 0; i < kNItems; ++i)
{
float z_val = z_vals[i];
out_vals[r][i] *= z_val / (1 + expf(-z_val));
}
__syncthreads();
store_output<Ktraits>(
out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
}
}
else
{
__syncthreads();
#pragma unroll
for (int r = 0; r < kNRows; ++r)
{
if constexpr (!kDirectIO)
{
if (r > 0)
{
__syncthreads();
}
}
store_output<Ktraits>(
out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
}
}
Bvar += kChunkSize;
Cvar += kChunkSize;
}
}
template <int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_fwd_launch(SSMParamsBase& params, cudaStream_t stream)
{
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
// processing 1 row.
static constexpr int kNRows = 1;
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen,
[&]
{
BOOL_SWITCH(params.is_variable_B, kIsVariableB,
[&]
{
BOOL_SWITCH(params.is_variable_C, kIsVariableC,
[&]
{
BOOL_SWITCH(params.z_ptr != nullptr, kHasZ,
[&]
{
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows,
kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
// constexpr int kSmemSize = Ktraits::kSmemSize;
constexpr int kSmemSize
= Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
// printf("smem_size = %d\n", kSmemSize);
dim3 grid(params.batch, params.dim / kNRows);
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024)
{
TLLM_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
});
});
});
});
}
template <typename input_t, typename weight_t>
void invokeSelectiveScan(SSMParamsBase& params, cudaStream_t stream)
{
if (params.seqlen <= 128)
{
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
}
else if (params.seqlen <= 256)
{
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
}
else if (params.seqlen <= 512)
{
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
}
else if (params.seqlen <= 1024)
{
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
}
else
{
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
}
}
#define INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(input_t, weight_t) \
template void invokeSelectiveScan<input_t, weight_t>(SSMParamsBase & params, cudaStream_t stream);
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(float, float);
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(half, float);
#ifdef ENABLE_BF16
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(__nv_bfloat16, float);
#endif
#undef INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename input_t, typename weight_t, bool dt_softplus, bool has_dt_bias, bool has_d, bool has_z>
__global__ void selectiveScanUpdate(SSMParamsBase params)
{
// Shared memory.
extern __shared__ char smem_[];
input_t* smem_b = reinterpret_cast<input_t*>(smem_);
input_t* smem_c = reinterpret_cast<input_t*>(smem_ + sizeof(input_t) * params.dstate);
const int batch_id = blockIdx.x;
const int dim_id = blockIdx.y * blockDim.x + threadIdx.x;
const input_t x = reinterpret_cast<const input_t*>(params.u_ptr)[batch_id * params.u_batch_stride + dim_id];
const weight_t* A = reinterpret_cast<const weight_t*>(params.A_ptr) + dim_id * params.A_d_stride;
const input_t* B = reinterpret_cast<const input_t*>(params.B_ptr) + batch_id * params.B_batch_stride;
const input_t* C = reinterpret_cast<const input_t*>(params.C_ptr) + batch_id * params.C_batch_stride;
const float* D_ptr = reinterpret_cast<const float*>(params.D_ptr);
const input_t* z_ptr = reinterpret_cast<const input_t*>(params.z_ptr);
weight_t* state = reinterpret_cast<weight_t*>(params.x_ptr) + batch_id * params.state_batch_stride
+ dim_id * params.state_d_stride;
const input_t dt
= reinterpret_cast<const input_t*>(params.delta_ptr)[batch_id * params.delta_batch_stride + dim_id];
const float* dt_bias_ptr = reinterpret_cast<const float*>(params.delta_bias_ptr);
input_t* out = reinterpret_cast<input_t*>(params.out_ptr) + batch_id * params.out_batch_stride;
float out_tmp = 0.0f;
// get delta bias
float dt_bias = 0.0f;
if (has_dt_bias)
{
dt_bias = dt_bias_ptr[dim_id];
}
// get D
float D = 0.0f;
if (has_d)
{
D = D_ptr[dim_id];
}
// dt = softplus(dt + dt_bias)
float dt_val = float(dt) + dt_bias;
if (dt_softplus)
{
dt_val = dt_val <= 20.f ? log1pf(expf(dt_val)) : dt_val;
}
out_tmp = D * float(x);
// read B, C
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < params.dstate; ++i)
{
smem_b[i] = B[i];
smem_c[i] = C[i];
}
}
__syncthreads();
for (int state_idx = 0; state_idx < params.dstate; ++state_idx)
{
// read A
weight_t A_val = A[state_idx];
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E
A_val *= kLog2e;
// dtA = exp(dt * A), dtB = dt * B
float dt_A = exp2f(dt_val * A_val);
float dt_B = dt_val * float(smem_b[state_idx]);
// update state
float state_new = float(state[state_idx]) * dt_A + float(x) * dt_B;
state[state_idx] = weight_t(state_new);
// y = C * state + D * x
out_tmp += state_new * float(smem_c[state_idx]);
}
// y = y * silu(z)
if (has_z)
{
float z = z_ptr[batch_id * params.z_batch_stride + dim_id];
out_tmp *= z / (1 + expf(-z));
}
// save out
out[dim_id] = input_t(out_tmp);
}
template <typename input_t, typename weight_t>
void invokeSelectiveScanUpdate(SSMParamsBase& params, cudaStream_t stream)
{
const int kNThreads = 32;
dim3 block(kNThreads);
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
// only save B and C to shared mem for reuse
size_t smem_size = params.dstate * sizeof(input_t) * 2;
BOOL_SWITCH(params.delta_softplus, kDtSoftplus,
[&]
{
BOOL_SWITCH(params.delta_bias_ptr != nullptr, kHasDtBias,
[&]
{
BOOL_SWITCH(params.D_ptr != nullptr, kHasD,
[&]
{
BOOL_SWITCH(params.z_ptr != nullptr, kHasZ,
[&]
{
selectiveScanUpdate<input_t, weight_t, kDtSoftplus, kHasDtBias, kHasD, kHasZ>
<<<grid, block, smem_size, stream>>>(params);
});
});
});
});
}
#define INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(input_t, weight_t) \
template void invokeSelectiveScanUpdate<input_t, weight_t>(SSMParamsBase & params, cudaStream_t stream)
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(float, float);
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(half, float);
#ifdef ENABLE_BF16
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(__nv_bfloat16, float);
#endif
#undef INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE
} // namespace kernels
} // namespace tensorrt_llm