TensorRT-LLMs/tensorrt_llm/models/llama/quantize.py
Kaiyu Xie c89653021e
Update TensorRT-LLM (20240116) (#891)
* Update TensorRT-LLM

---------

Co-authored-by: Eddie-Wang1120 <81598289+Eddie-Wang1120@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-01-16 20:03:11 +08:00

141 lines
5.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Adapted from examples/llama/quantize.py
"""
import random
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer
from ..._utils import str_dtype_to_torch
from ...logger import logger
from ...models.quantized.ammo import quantize_and_export
def get_calib_dataloader(data="cnn_dailymail",
tokenizer=None,
batch_size=1,
calib_size=512,
block_size=512,
cache_dir=None):
print("Loading calibration dataset")
if data == "pileval":
dataset = load_dataset(
"json",
data_files="https://the-eye.eu/public/AI/pile/val.jsonl.zst",
split="train",
cache_dir=cache_dir)
dataset = dataset["text"][:calib_size]
elif data == "cnn_dailymail":
dataset = load_dataset("cnn_dailymail",
name="3.0.0",
split="train",
cache_dir=cache_dir)
dataset = dataset["article"][:calib_size]
else:
raise NotImplementedError
dataset_input_ids = tokenizer(dataset,
return_tensors="pt",
padding=True,
truncation=True,
max_length=block_size).input_ids.cuda()
calib_dataloader = DataLoader(dataset_input_ids,
batch_size=batch_size,
shuffle=False)
return calib_dataloader
def get_tokenizer(ckpt_path, **kwargs):
logger.info(f"Loading tokenizer from {ckpt_path}")
tokenizer = AutoTokenizer.from_pretrained(ckpt_path,
padding_side="left",
**kwargs)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_model(ckpt_path, dtype="float16", cache_dir=None):
logger.info(f"Loading model from {ckpt_path}")
torch_dtype = str_dtype_to_torch(dtype)
model = AutoModelForCausalLM.from_pretrained(
ckpt_path,
device_map="auto",
cache_dir=cache_dir,
trust_remote_code=True,
torch_dtype=torch_dtype,
)
model.eval()
model = model.to(memory_format=torch.channels_last)
return model
def quantize_llama_and_export(hf_model_dir,
export_path,
qformat: str = 'fp8',
dtype: Optional[str] = 'float16',
calib_size: Optional[int] = 512,
hf_cache_dir: Optional[str] = None,
seed: Optional[int] = None,
quantize_lm_head=False):
'''
Quantize a llama model from HF model dir and save it as export_path.
Parameters:
hf_model_dir: huggingface model directory
export_path: a path to save the quantized weights and scales tensors
qformat: quantization format, currently 'int4_awq' and 'fp8' are supported
dtype: the datatype to run the HF/pytorch model forward during quantization
calib_size: Number of samples for calibration.
seed: the seed to be used in the random and np.random package during quantization
Return: None, raises exception if the quantization failed due to any reason.
'''
assert qformat in ['int4_awq', 'fp8'
], "More quantization format supported in future release"
if not torch.cuda.is_available():
raise EnvironmentError("GPU is required for inference.")
if seed is not None:
random.seed(seed)
np.random.seed(seed)
tokenizer = get_tokenizer(hf_model_dir, cache_dir=hf_cache_dir)
model = get_model(hf_model_dir, dtype, cache_dir=hf_cache_dir)
calib_dataloader = get_calib_dataloader(tokenizer=tokenizer,
calib_size=calib_size,
cache_dir=hf_cache_dir)
quant_cfg_dict = {}
if quantize_lm_head:
quant_cfg_dict.update({
"*lm_head*": {
"enable": True
},
})
model = quantize_and_export(model,
qformat=qformat,
calib_dataloader=calib_dataloader,
export_path=export_path,
quant_cfg_dict=quant_cfg_dict)