TensorRT-LLMs/cpp/tensorrt_llm/common/envUtils.h
Kaiyu Xie bca9a33b02
Update TensorRT-LLM (#2008)
* Update TensorRT-LLM

---------

Co-authored-by: Timur Abishev <abishev.timur@gmail.com>
Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com>
Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai>
Co-authored-by: hattizai <hattizai@gmail.com>
2024-07-23 23:05:09 +08:00

52 lines
1.7 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
#include <optional>
namespace tensorrt_llm::common
{
// XQA kernels (optimized kernels for generation phase).
bool forceXQAKernels();
// max number of CTAs for each KV head, multiple CTAs for one KV head is multi-block mode.
// this number defines the maximum number when reaches both max_batch_size and max_beam_width.
// If batch_size or beam_width doesn't reach maximum value, it is possible to have more CTAs per KV head than this
// value.
int32_t xqaMaxNbCtaPerKVHeadFactor();
std::optional<int32_t> envXqaNbCtaPerKVHead();
// Whether XQA JIT is enabled.
//
// Returns the value of TRTLLM_ENABLE_XQA_JIT env var. If such env var doesn't exist, std::nullopt is returned.
std::optional<bool> getEnvEnableXQAJIT();
// Tune the number of blocks per sequence for accuracy/performance purpose.
bool getEnvMmhaMultiblockDebug();
int getEnvMmhaBlocksPerSequence();
int getEnvMmhaKernelBlockSize();
// Whether FDL is enabled.
bool getEnvEnableFDL();
} // namespace tensorrt_llm::common