TensorRT-LLMs/cpp/tensorrt_llm/layers/topKSamplingLayer.cu
Kaiyu Xie bca9a33b02
Update TensorRT-LLM (#2008)
* Update TensorRT-LLM

---------

Co-authored-by: Timur Abishev <abishev.timur@gmail.com>
Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com>
Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai>
Co-authored-by: hattizai <hattizai@gmail.com>
2024-07-23 23:05:09 +08:00

265 lines
11 KiB
Plaintext

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "topKSamplingLayer.h"
#include <algorithm>
#include <float.h>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::layers
{
template <int32_t TOP_K_MAX>
__global__ void setupTopKRuntimeArgs(SizeType32 batchSize, SizeType32 topK, SizeType32* topKs, SizeType32 topKsSize,
float topP, float* topPs, SizeType32 topPsSize, bool* skipDecode, SizeType32 const* batchSlots)
{
auto const index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
for (auto bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
auto k = topKsSize > 1 ? topKs[batchSlot] : topK;
auto p = topPsSize > 1 ? topPs[batchSlot] : topP;
if (k == 0 && p == 0.0f)
{
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
// equivalent to greedy search. So, we set the topk = 1 as an alternative
// solution.
k = 1;
}
if (k > 0 && p == 0.0f)
{
// This case corresponds to the old topk sampling, which is equivalent to
// the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and
// TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we
// replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the
// compatibility.
p = 1.0f;
}
// Clip k value. A topk sampling kernel supports up to TOP_K_MAX.
topKs[batchSlot] = k;
// Clip p value if it is out of range. range = [0.0, 1.0].
topPs[batchSlot] = p;
skipDecode[batchSlot] = k == 0;
}
}
template <typename T>
TopKSamplingLayer<T>::TopKSamplingLayer(
DecoderDomain const& decoderDomain, std::shared_ptr<BufferManager> bufferManager)
: BaseLayer(decoderDomain, bufferManager)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
allocateBuffer(mDecoderDomain.getBatchSize());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::allocateBuffer(SizeType32 const batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mWorkspaceSize = getTopKWorkspaceSize<T>(batchSize, 1, TOP_K_MAX, mDecoderDomain.getVocabSizePadded());
mRuntimeTopKDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<SizeType32>::value);
mRuntimeTopPDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<float>::value);
mSkipDecodeDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<bool>::value);
mSetupWorkspaceDevice = mBufferManager->gpu(batchSize, TRTDataType<SizeType32>::value);
mSkipDecodeHost = mBufferManager->pinnedPool(ITensor::makeShape({batchSize}), TRTDataType<bool>::value);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, BufferConstPtr batchSlots,
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
auto const defaultTopK = DefaultDecodingParams::getTopK();
auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector<SizeType32>(batchSize, defaultTopK));
auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector<float>{});
auto const runtimeTopKSize = runtimeTopK.size();
auto const runtimeTopPSize = runtimeTopP.size();
mNormalizeLogProbs = setupParams->normalizeLogProbs.has_value() && setupParams->normalizeLogProbs.value();
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& topK : runtimeTopK)
{
if (topK < 0 || topK > TOP_K_MAX)
{
TLLM_LOG_WARNING(
"TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX);
topK = std::clamp(topK, 0, static_cast<SizeType32>(TOP_K_MAX));
}
}
auto const topK = *std::max_element(std::begin(runtimeTopK), std::end(runtimeTopK));
auto const topP = (runtimeTopPSize == 0) ? DefaultDecodingParams::getTopP() : runtimeTopP.front();
auto batchSlotsPtr = bufferCastOrNull<SizeType32>(batchSlots);
auto setupWorkspaceDevicePtr = bufferCastOrNull<SizeType32>(mSetupWorkspaceDevice);
auto setupWorkspaceDeviceAsFloatPtr = reinterpret_cast<float const*>(setupWorkspaceDevicePtr);
auto runtimeTopKDevicePtr = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
auto runtimeTopPDevicePtr = bufferCastOrNull<float>(mRuntimeTopPDevice);
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
BufferPtr runtimeTopKSetupWorkspaceSlice = IBuffer::slice(mSetupWorkspaceDevice, 0, batchSize);
mBufferManager->copy(runtimeTopK.data(), *runtimeTopKSetupWorkspaceSlice, runtime::MemoryType::kCPU);
invokeScatterDecodingParams(
setupWorkspaceDevicePtr, runtimeTopKDevicePtr, batchSlotsPtr, batchSize, getStream());
}
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize));
BufferPtr runtimeTopKSetupWorkspaceSlice = IBuffer::slice(mSetupWorkspaceDevice, 0, batchSize);
mBufferManager->copy(runtimeTopP.data(), *runtimeTopKSetupWorkspaceSlice, runtime::MemoryType::kCPU);
invokeScatterDecodingParams(
setupWorkspaceDeviceAsFloatPtr, runtimeTopPDevicePtr, batchSlotsPtr, batchSize, getStream());
}
auto skipDecodeDevicePtr = bufferCastOrNull<bool>(mSkipDecodeDevice);
{
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
// support topK up to TOP_K_MAX.
setupTopKRuntimeArgs<TOP_K_MAX><<<grid, block, 0, getStream()>>>(batchSize, topK, runtimeTopKDevicePtr,
runtimeTopKSize, topP, runtimeTopPDevicePtr, runtimeTopPSize, skipDecodeDevicePtr, batchSlotsPtr);
}
mBufferManager->copy(*mSkipDecodeDevice, *mSkipDecodeHost);
std::vector<SizeType32> runtimeTopKs(mDecoderDomain.getBatchSize());
mBufferManager->copy(*mRuntimeTopKDevice, runtimeTopKs.data(), runtime::MemoryType::kCPU);
{
SizeType32 maxTopK = 0;
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto bid = bi;
if (batchSlotsPtr)
{
bid = batchSlotsPtr[bi];
}
maxTopK = std::max(maxTopK, runtimeTopKs[bid]);
}
mRuntimeMaxTopK = std::max(mRuntimeMaxTopK, maxTopK);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::forwardAsync(
std::shared_ptr<BaseDecodingOutputs> const& outputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
auto const batchSize = inputs->logits.value()->getDimension<0>();
auto logits = bufferCastOrNull<T>(inputs->logits);
auto endIds = bufferCastOrNull<TokenIdType>(inputs->endIds);
auto batchSlots = bufferCastOrNull<SizeType32>(inputs->batchSlots);
auto curandStatesDevice = inputs->curandStates;
auto samplingWorkspaceDevice = inputs->samplingWorkspace;
auto const probsComputed = inputs->probsComputed;
std::vector<int32_t> batchSlotsVec(batchSize);
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost = inputs->batchSlots ? bufferCastOrNull<int>(inputs->batchSlots) : batchSlotsVec.data();
auto skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
auto const skip = allOfBatchSlots(batchSlotsHost, skipDecodeHostPtr, batchSize, true);
if (skip)
{
return;
}
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
FinishedState const* finishedInput = (inputs->finished)
? reinterpret_cast<FinishedState const*>(bufferCastOrNull<FinishedState::UnderlyingType>(inputs->finished))
: nullptr;
FinishedState* finishedOutput = (outputs->finished)
? reinterpret_cast<FinishedState*>(bufferCastOrNull<FinishedState::UnderlyingType>(outputs->finished))
: nullptr;
TopKSamplingKernelParams<T> params;
params.logProbs = logits;
params.outputIdsPtrs = bufferCastOrNull<TokenIdType*>(outputs->outputIdsPtr);
params.workspace = samplingWorkspaceDevice;
params.maxTopP = 1.0f;
params.topPs = bufferCastOrNull<float>(mRuntimeTopPDevice);
params.maxTopK = mRuntimeMaxTopK;
params.topKs = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
params.sequenceLengths = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
params.endIds = endIds;
params.batchSlots = batchSlots;
params.finishedInput = finishedInput;
params.finishedOutput = finishedOutput;
params.skipDecode = bufferCastOrNull<bool>(mSkipDecodeDevice);
params.cumLogProbs = bufferCastOrNull<float>(outputs->cumLogProbs);
params.outputLogProbs = bufferCastOrNull<float>(outputs->outputLogProbsTiled);
params.curandState = curandStatesDevice;
params.batchSize = batchSize;
params.maxBatchSize = mDecoderDomain.getBatchSize();
params.maxTokensPerStep = 1;
params.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
params.normalizeLogProbs = mNormalizeLogProbs;
params.logitsHasProbs = probsComputed;
invokeBatchTopKSampling(params, getStream());
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
size_t TopKSamplingLayer<T>::getWorkspaceSize() const noexcept
{
return mWorkspaceSize;
}
template class TopKSamplingLayer<float>;
template class TopKSamplingLayer<half>;
} // namespace tensorrt_llm::layers