mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Timur Abishev <abishev.timur@gmail.com> Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com> Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai> Co-authored-by: hattizai <hattizai@gmail.com>
265 lines
11 KiB
Plaintext
265 lines
11 KiB
Plaintext
/*
|
|
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
|
|
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/kernels/decodingCommon.h"
|
|
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
|
|
#include "tensorrt_llm/layers/defaultDecodingParams.h"
|
|
#include "tensorrt_llm/layers/layerUtils.h"
|
|
#include "topKSamplingLayer.h"
|
|
|
|
#include <algorithm>
|
|
#include <float.h>
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::kernels;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::layers
|
|
{
|
|
|
|
template <int32_t TOP_K_MAX>
|
|
__global__ void setupTopKRuntimeArgs(SizeType32 batchSize, SizeType32 topK, SizeType32* topKs, SizeType32 topKsSize,
|
|
float topP, float* topPs, SizeType32 topPsSize, bool* skipDecode, SizeType32 const* batchSlots)
|
|
{
|
|
auto const index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
|
|
for (auto bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
|
|
{
|
|
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
|
|
auto k = topKsSize > 1 ? topKs[batchSlot] : topK;
|
|
auto p = topPsSize > 1 ? topPs[batchSlot] : topP;
|
|
if (k == 0 && p == 0.0f)
|
|
{
|
|
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
|
|
// equivalent to greedy search. So, we set the topk = 1 as an alternative
|
|
// solution.
|
|
k = 1;
|
|
}
|
|
if (k > 0 && p == 0.0f)
|
|
{
|
|
// This case corresponds to the old topk sampling, which is equivalent to
|
|
// the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and
|
|
// TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we
|
|
// replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the
|
|
// compatibility.
|
|
p = 1.0f;
|
|
}
|
|
// Clip k value. A topk sampling kernel supports up to TOP_K_MAX.
|
|
topKs[batchSlot] = k;
|
|
// Clip p value if it is out of range. range = [0.0, 1.0].
|
|
topPs[batchSlot] = p;
|
|
skipDecode[batchSlot] = k == 0;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
TopKSamplingLayer<T>::TopKSamplingLayer(
|
|
DecoderDomain const& decoderDomain, std::shared_ptr<BufferManager> bufferManager)
|
|
: BaseLayer(decoderDomain, bufferManager)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
allocateBuffer(mDecoderDomain.getBatchSize());
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::allocateBuffer(SizeType32 const batchSize)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
mWorkspaceSize = getTopKWorkspaceSize<T>(batchSize, 1, TOP_K_MAX, mDecoderDomain.getVocabSizePadded());
|
|
mRuntimeTopKDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<SizeType32>::value);
|
|
mRuntimeTopPDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<float>::value);
|
|
mSkipDecodeDevice = mBufferManager->gpu(ITensor::makeShape({batchSize}), TRTDataType<bool>::value);
|
|
mSetupWorkspaceDevice = mBufferManager->gpu(batchSize, TRTDataType<SizeType32>::value);
|
|
|
|
mSkipDecodeHost = mBufferManager->pinnedPool(ITensor::makeShape({batchSize}), TRTDataType<bool>::value);
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, BufferConstPtr batchSlots,
|
|
std::shared_ptr<BaseSetupParams> const& baseSetupParams)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
|
|
|
|
auto const defaultTopK = DefaultDecodingParams::getTopK();
|
|
auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector<SizeType32>(batchSize, defaultTopK));
|
|
auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector<float>{});
|
|
|
|
auto const runtimeTopKSize = runtimeTopK.size();
|
|
auto const runtimeTopPSize = runtimeTopP.size();
|
|
mNormalizeLogProbs = setupParams->normalizeLogProbs.has_value() && setupParams->normalizeLogProbs.value();
|
|
|
|
for (auto& topP : runtimeTopP)
|
|
{
|
|
if (topP < 0.f || topP > 1.0f)
|
|
{
|
|
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
|
|
topP = std::clamp(topP, 0.f, 1.f);
|
|
}
|
|
}
|
|
for (auto& topK : runtimeTopK)
|
|
{
|
|
if (topK < 0 || topK > TOP_K_MAX)
|
|
{
|
|
TLLM_LOG_WARNING(
|
|
"TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX);
|
|
topK = std::clamp(topK, 0, static_cast<SizeType32>(TOP_K_MAX));
|
|
}
|
|
}
|
|
|
|
auto const topK = *std::max_element(std::begin(runtimeTopK), std::end(runtimeTopK));
|
|
auto const topP = (runtimeTopPSize == 0) ? DefaultDecodingParams::getTopP() : runtimeTopP.front();
|
|
|
|
auto batchSlotsPtr = bufferCastOrNull<SizeType32>(batchSlots);
|
|
auto setupWorkspaceDevicePtr = bufferCastOrNull<SizeType32>(mSetupWorkspaceDevice);
|
|
auto setupWorkspaceDeviceAsFloatPtr = reinterpret_cast<float const*>(setupWorkspaceDevicePtr);
|
|
auto runtimeTopKDevicePtr = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
|
|
auto runtimeTopPDevicePtr = bufferCastOrNull<float>(mRuntimeTopPDevice);
|
|
if (runtimeTopKSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
|
|
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
|
|
BufferPtr runtimeTopKSetupWorkspaceSlice = IBuffer::slice(mSetupWorkspaceDevice, 0, batchSize);
|
|
mBufferManager->copy(runtimeTopK.data(), *runtimeTopKSetupWorkspaceSlice, runtime::MemoryType::kCPU);
|
|
invokeScatterDecodingParams(
|
|
setupWorkspaceDevicePtr, runtimeTopKDevicePtr, batchSlotsPtr, batchSize, getStream());
|
|
}
|
|
if (runtimeTopPSize > 1)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
|
|
fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize));
|
|
BufferPtr runtimeTopKSetupWorkspaceSlice = IBuffer::slice(mSetupWorkspaceDevice, 0, batchSize);
|
|
mBufferManager->copy(runtimeTopP.data(), *runtimeTopKSetupWorkspaceSlice, runtime::MemoryType::kCPU);
|
|
invokeScatterDecodingParams(
|
|
setupWorkspaceDeviceAsFloatPtr, runtimeTopPDevicePtr, batchSlotsPtr, batchSize, getStream());
|
|
}
|
|
|
|
auto skipDecodeDevicePtr = bufferCastOrNull<bool>(mSkipDecodeDevice);
|
|
{
|
|
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
|
|
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
|
|
// support topK up to TOP_K_MAX.
|
|
setupTopKRuntimeArgs<TOP_K_MAX><<<grid, block, 0, getStream()>>>(batchSize, topK, runtimeTopKDevicePtr,
|
|
runtimeTopKSize, topP, runtimeTopPDevicePtr, runtimeTopPSize, skipDecodeDevicePtr, batchSlotsPtr);
|
|
}
|
|
|
|
mBufferManager->copy(*mSkipDecodeDevice, *mSkipDecodeHost);
|
|
std::vector<SizeType32> runtimeTopKs(mDecoderDomain.getBatchSize());
|
|
mBufferManager->copy(*mRuntimeTopKDevice, runtimeTopKs.data(), runtime::MemoryType::kCPU);
|
|
{
|
|
SizeType32 maxTopK = 0;
|
|
for (SizeType32 bi = 0; bi < batchSize; ++bi)
|
|
{
|
|
auto bid = bi;
|
|
if (batchSlotsPtr)
|
|
{
|
|
bid = batchSlotsPtr[bi];
|
|
}
|
|
maxTopK = std::max(maxTopK, runtimeTopKs[bid]);
|
|
}
|
|
mRuntimeMaxTopK = std::max(mRuntimeMaxTopK, maxTopK);
|
|
}
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void TopKSamplingLayer<T>::forwardAsync(
|
|
std::shared_ptr<BaseDecodingOutputs> const& outputs, std::shared_ptr<BaseDecodingInputs> const& baseInputs)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
|
|
auto inputs = std::dynamic_pointer_cast<SamplingInputs>(baseInputs);
|
|
|
|
auto const batchSize = inputs->logits.value()->getDimension<0>();
|
|
|
|
auto logits = bufferCastOrNull<T>(inputs->logits);
|
|
auto endIds = bufferCastOrNull<TokenIdType>(inputs->endIds);
|
|
auto batchSlots = bufferCastOrNull<SizeType32>(inputs->batchSlots);
|
|
auto curandStatesDevice = inputs->curandStates;
|
|
auto samplingWorkspaceDevice = inputs->samplingWorkspace;
|
|
auto const probsComputed = inputs->probsComputed;
|
|
|
|
std::vector<int32_t> batchSlotsVec(batchSize);
|
|
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
|
|
auto batchSlotsHost = inputs->batchSlots ? bufferCastOrNull<int>(inputs->batchSlots) : batchSlotsVec.data();
|
|
auto skipDecodeHostPtr = bufferCastOrNull<bool>(mSkipDecodeHost);
|
|
auto const skip = allOfBatchSlots(batchSlotsHost, skipDecodeHostPtr, batchSize, true);
|
|
if (skip)
|
|
{
|
|
return;
|
|
}
|
|
|
|
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
|
|
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
|
|
|
|
FinishedState const* finishedInput = (inputs->finished)
|
|
? reinterpret_cast<FinishedState const*>(bufferCastOrNull<FinishedState::UnderlyingType>(inputs->finished))
|
|
: nullptr;
|
|
FinishedState* finishedOutput = (outputs->finished)
|
|
? reinterpret_cast<FinishedState*>(bufferCastOrNull<FinishedState::UnderlyingType>(outputs->finished))
|
|
: nullptr;
|
|
|
|
TopKSamplingKernelParams<T> params;
|
|
params.logProbs = logits;
|
|
params.outputIdsPtrs = bufferCastOrNull<TokenIdType*>(outputs->outputIdsPtr);
|
|
params.workspace = samplingWorkspaceDevice;
|
|
params.maxTopP = 1.0f;
|
|
params.topPs = bufferCastOrNull<float>(mRuntimeTopPDevice);
|
|
params.maxTopK = mRuntimeMaxTopK;
|
|
params.topKs = bufferCastOrNull<SizeType32>(mRuntimeTopKDevice);
|
|
params.sequenceLengths = bufferCastOrNull<SizeType32>(outputs->sequenceLength);
|
|
params.endIds = endIds;
|
|
params.batchSlots = batchSlots;
|
|
params.finishedInput = finishedInput;
|
|
params.finishedOutput = finishedOutput;
|
|
params.skipDecode = bufferCastOrNull<bool>(mSkipDecodeDevice);
|
|
params.cumLogProbs = bufferCastOrNull<float>(outputs->cumLogProbs);
|
|
params.outputLogProbs = bufferCastOrNull<float>(outputs->outputLogProbsTiled);
|
|
params.curandState = curandStatesDevice;
|
|
params.batchSize = batchSize;
|
|
params.maxBatchSize = mDecoderDomain.getBatchSize();
|
|
params.maxTokensPerStep = 1;
|
|
params.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
|
|
params.normalizeLogProbs = mNormalizeLogProbs;
|
|
params.logitsHasProbs = probsComputed;
|
|
|
|
invokeBatchTopKSampling(params, getStream());
|
|
sync_check_cuda_error();
|
|
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
size_t TopKSamplingLayer<T>::getWorkspaceSize() const noexcept
|
|
{
|
|
return mWorkspaceSize;
|
|
}
|
|
|
|
template class TopKSamplingLayer<float>;
|
|
template class TopKSamplingLayer<half>;
|
|
|
|
} // namespace tensorrt_llm::layers
|