mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-23 20:23:08 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Timur Abishev <abishev.timur@gmail.com> Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com> Co-authored-by: Saeyoon Oh <saeyoon.oh@furiosa.ai> Co-authored-by: hattizai <hattizai@gmail.com>
427 lines
16 KiB
Python
427 lines
16 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import ctypes
|
|
import platform
|
|
from collections import OrderedDict
|
|
from dataclasses import asdict, dataclass, field, fields
|
|
from enum import IntEnum
|
|
from pathlib import Path
|
|
from typing import List, Optional, Tuple
|
|
|
|
import tensorrt as trt
|
|
|
|
from .._ipc_utils import IpcMemory
|
|
from ..logger import logger
|
|
from ..mapping import Mapping
|
|
|
|
TRT_LLM_PLUGIN_NAMESPACE = 'tensorrt_llm'
|
|
|
|
|
|
def plugin_lib_path() -> str:
|
|
project_dir = Path(__file__).parent.parent.absolute()
|
|
dyn_lib = "libnvinfer_plugin_tensorrt_llm.so" if platform.system(
|
|
) != "Windows" else "nvinfer_plugin_tensorrt_llm.dll"
|
|
return str(project_dir.joinpath("libs", dyn_lib))
|
|
|
|
|
|
def _load_plugin_lib():
|
|
winmode = 0 if platform.system() == "Windows" else None
|
|
handle = ctypes.CDLL(plugin_lib_path(),
|
|
mode=ctypes.RTLD_GLOBAL,
|
|
winmode=winmode)
|
|
try:
|
|
handle.initTrtLlmPlugins.argtypes = [ctypes.c_void_p, ctypes.c_char_p]
|
|
handle.initTrtLlmPlugins.restype = ctypes.c_bool
|
|
except AttributeError as err:
|
|
raise ImportError('TensorRT-LLM Plugin is unavailable') from err
|
|
assert handle.initTrtLlmPlugins(None,
|
|
TRT_LLM_PLUGIN_NAMESPACE.encode('utf-8'))
|
|
|
|
|
|
class ContextFMHAType(IntEnum):
|
|
disabled = 0
|
|
# FP16 I/O, FP16 Accumulation
|
|
enabled = 1
|
|
# FP16 I/O, FP32 Accumulation
|
|
enabled_with_fp32_acc = 2
|
|
|
|
|
|
DEFAULT_PLUGIN_DTYPE_OPTIONS = [
|
|
"auto", "float16", "float32", "bfloat16", "int32", None
|
|
]
|
|
PLUGIN_DTYPE_OPTIONS_MAP = {
|
|
"gemm_swiglu_plugin": ["fp8", None],
|
|
"gemm_plugin":
|
|
["auto", "float16", "float32", "bfloat16", "int32", "fp8", None]
|
|
}
|
|
|
|
|
|
def _make_plugin_property(field_name: str, field_type: type):
|
|
|
|
def bind(field_name):
|
|
storage_name = f'_{field_name}'
|
|
|
|
@property
|
|
def prop(self):
|
|
field_value = getattr(self, storage_name)
|
|
if field_name != 'dtype' and field_value == 'auto':
|
|
return self.dtype
|
|
else:
|
|
return field_value
|
|
|
|
@prop.setter
|
|
def prop(self, value):
|
|
if field_type is bool:
|
|
assert isinstance(value, bool), \
|
|
f"Plugin {field_name} expects {field_type}, got {type(value)}"
|
|
elif field_type in (str, Optional[str]):
|
|
plugin_dtype_options = DEFAULT_PLUGIN_DTYPE_OPTIONS
|
|
if field_name in PLUGIN_DTYPE_OPTIONS_MAP:
|
|
plugin_dtype_options = PLUGIN_DTYPE_OPTIONS_MAP[field_name]
|
|
assert value in plugin_dtype_options, \
|
|
f"Plugin {field_name} expects values in {plugin_dtype_options}, got {value}"
|
|
if field_name == 'dtype':
|
|
assert value not in ['auto', None], \
|
|
"Plugin dtype cannot be auto or None"
|
|
setattr(self, storage_name, value)
|
|
logger.info(f"Set {field_name} to {value}.")
|
|
|
|
return prop
|
|
|
|
return bind(field_name)
|
|
|
|
|
|
class PluginConfigMeta(type):
|
|
|
|
def __new__(cls, name, bases, attrs):
|
|
for storage_name, field_type in attrs['__annotations__'].items():
|
|
assert storage_name.startswith('_')
|
|
field_name = storage_name.lstrip('_')
|
|
attrs[field_name] = _make_plugin_property(field_name, field_type)
|
|
return super().__new__(cls, name, bases, attrs)
|
|
|
|
|
|
@dataclass(slots=True)
|
|
class PluginConfig(metaclass=PluginConfigMeta):
|
|
"""The config that manages plugin-related options.
|
|
|
|
There are two option categories:
|
|
* Plugin options (typically with xxx_plugin naming). These options can be assigned with:
|
|
* "float16"/"bfloat16"/"float32"/"int32", which means the plugin is enabled with the specified precision; (Some plugins only support limited dtype, i.e., gemm_swiglu_plugin only supports fp8 now)
|
|
* "auto", which means the plugin is enabled with the precision of `dtype` field (the `dtype` field must be same to model dtype, i.e., the one in PretrainedConfig);
|
|
* None, which means the plugin is disabled.
|
|
* Other features. These options can be assigned with boolean:
|
|
* True, which means the plugin is enabled;
|
|
* False, which means the plugin is disabled.
|
|
|
|
Note: All the fields should use a prefix "_"; PluginConfigMeta will wrap each field as a property.
|
|
This ensures the fields can only be assigned with allowed values.
|
|
"""
|
|
_dtype: str = field(default="float16", init=False)
|
|
|
|
# Plugins
|
|
_bert_attention_plugin: Optional[str] = field(default="auto", init=False)
|
|
_gpt_attention_plugin: Optional[str] = field(default="auto", init=False)
|
|
_gemm_plugin: Optional[str] = field(default=None, init=False)
|
|
_gemm_swiglu_plugin: Optional[str] = field(default=None, init=False)
|
|
_fp8_rowwise_gemm_plugin: Optional[str] = field(default=None, init=False)
|
|
_smooth_quant_gemm_plugin: Optional[str] = field(default=None, init=False)
|
|
_identity_plugin: Optional[str] = field(default=None, init=False)
|
|
_layernorm_quantization_plugin: Optional[str] = field(default=None,
|
|
init=False)
|
|
_rmsnorm_quantization_plugin: Optional[str] = field(default=None,
|
|
init=False)
|
|
_nccl_plugin: Optional[str] = field(default="auto", init=False)
|
|
_lookup_plugin: Optional[str] = field(default=None, init=False)
|
|
_lora_plugin: Optional[str] = field(default=None, init=False)
|
|
_weight_only_groupwise_quant_matmul_plugin: Optional[str] = field(
|
|
default=None, init=False)
|
|
_weight_only_quant_matmul_plugin: Optional[str] = field(default=None,
|
|
init=False)
|
|
_quantize_per_token_plugin: bool = field(default=False, init=False)
|
|
_quantize_tensor_plugin: bool = field(default=False, init=False)
|
|
_moe_plugin: Optional[str] = field(default="auto", init=False)
|
|
_mamba_conv1d_plugin: Optional[str] = field(default="auto", init=False)
|
|
|
|
# Features
|
|
_context_fmha: bool = field(default=True, init=False)
|
|
_context_fmha_fp32_acc: bool = field(
|
|
default=False, init=False) # will use fp16 if disabled
|
|
_paged_kv_cache: bool = field(default=True, init=False)
|
|
_remove_input_padding: bool = field(default=True, init=False)
|
|
_reduce_fusion: bool = field(default=False, init=False)
|
|
_enable_xqa: bool = field(default=True, init=False)
|
|
_tokens_per_block: int = field(default=64, init=False)
|
|
_use_paged_context_fmha: bool = field(default=False, init=False)
|
|
_use_fp8_context_fmha: bool = field(default=False, init=False)
|
|
_multiple_profiles: bool = field(default=False, init=False)
|
|
_paged_state: bool = field(default=True, init=False)
|
|
_streamingllm: bool = field(default=False, init=False)
|
|
|
|
def update_from_dict(self, config: dict):
|
|
for name in config.keys():
|
|
if hasattr(self, name):
|
|
value_to_be_update = config[name]
|
|
if isinstance(getattr(self, name), bool):
|
|
if value_to_be_update == "enable":
|
|
value_to_be_update = True
|
|
elif value_to_be_update == "disable":
|
|
value_to_be_update = False
|
|
elif value_to_be_update == "disable":
|
|
value_to_be_update = None
|
|
setattr(self, name, value_to_be_update)
|
|
|
|
@classmethod
|
|
def from_dict(cls, config: dict):
|
|
plugin_config = cls()
|
|
plugin_config.update_from_dict(config)
|
|
return plugin_config
|
|
|
|
@classmethod
|
|
def from_arguments(cls, args: argparse.Namespace):
|
|
return cls.from_dict(vars(args))
|
|
|
|
def to_dict(self):
|
|
config = asdict(self)
|
|
# Remove prefix "_" of the storage name
|
|
config = {key.lstrip('_'): value for key, value in config.items()}
|
|
return config
|
|
|
|
def to_legacy_setting(self):
|
|
'''Legacy setting means that all of the plugins and features are
|
|
disabled, this needed for the legacy `build.py` script, which will be
|
|
migrated to the centralized building script `tensorrt_llm/commands/build.py`.
|
|
|
|
After the migration is done, this function may or may not be deleted.
|
|
'''
|
|
for field in fields(self):
|
|
# Remove prefix "_" of the storage name
|
|
field_name = field.name.lstrip('_')
|
|
if field_name == 'dtype':
|
|
continue
|
|
if field.type in (str, Optional[str]):
|
|
setattr(self, field_name, None)
|
|
elif field.type == bool:
|
|
setattr(self, field_name, False)
|
|
|
|
@property
|
|
def context_fmha_type(self):
|
|
if self.context_fmha_fp32_acc:
|
|
return ContextFMHAType.enabled_with_fp32_acc
|
|
elif self.context_fmha:
|
|
return ContextFMHAType.enabled
|
|
else:
|
|
return ContextFMHAType.disabled
|
|
|
|
@context_fmha_type.setter
|
|
def context_fmha_type(self, value):
|
|
if value == ContextFMHAType.disabled:
|
|
self.context_fmha = False
|
|
self.context_fmha_fp32_acc = False
|
|
else:
|
|
self.context_fmha = True
|
|
if value == ContextFMHAType.enabled:
|
|
self.context_fmha_fp32_acc = False
|
|
elif value == ContextFMHAType.enabled_with_fp32_acc:
|
|
self.context_fmha_fp32_acc = True
|
|
|
|
def set_smooth_quant_plugins(self, dtype: str = "auto"):
|
|
self.smooth_quant_gemm_plugin = dtype
|
|
self.rmsnorm_quantization_plugin = dtype
|
|
self.layernorm_quantization_plugin = dtype
|
|
self.quantize_per_token_plugin = True
|
|
self.quantize_tensor_plugin = True
|
|
return self
|
|
|
|
def set_fp8_rowwise_quant_plugins(self, dtype: str = "auto"):
|
|
self.fp8_rowwise_gemm_plugin = dtype
|
|
self.rmsnorm_quantization_plugin = dtype
|
|
# self.layernorm_quantization_plugin = dtype
|
|
self.quantize_per_token_plugin = True
|
|
self.quantize_tensor_plugin = True
|
|
return self
|
|
|
|
def set_context_fmha(self, context_fmha_type=ContextFMHAType.enabled):
|
|
assert type(context_fmha_type) == ContextFMHAType
|
|
self.context_fmha_type = context_fmha_type
|
|
return self
|
|
|
|
def enable_paged_kv_cache(self, tokens_per_block: int = 64):
|
|
self.paged_kv_cache = True
|
|
self.tokens_per_block = tokens_per_block
|
|
return self
|
|
|
|
def set_nccl_plugin(self, dtype: str = "auto"):
|
|
self.nccl_plugin = dtype
|
|
init_all_reduce_helper()
|
|
return self
|
|
|
|
|
|
cli_plugin_args = [
|
|
# Plugins
|
|
"bert_attention_plugin",
|
|
"gpt_attention_plugin",
|
|
"gemm_plugin",
|
|
"gemm_swiglu_plugin",
|
|
"fp8_rowwise_gemm_plugin",
|
|
"lookup_plugin",
|
|
"lora_plugin",
|
|
"moe_plugin",
|
|
"mamba_conv1d_plugin",
|
|
"nccl_plugin",
|
|
|
|
# Features
|
|
"context_fmha",
|
|
"context_fmha_fp32_acc",
|
|
"paged_kv_cache",
|
|
"remove_input_padding",
|
|
"enable_xqa",
|
|
"tokens_per_block",
|
|
"use_paged_context_fmha",
|
|
"use_fp8_context_fmha",
|
|
"multiple_profiles",
|
|
"paged_state",
|
|
"streamingllm",
|
|
"reduce_fusion"
|
|
]
|
|
|
|
|
|
def add_plugin_argument(parser):
|
|
plugin_config = PluginConfig()
|
|
for field in fields(plugin_config):
|
|
# Remove prefix "_" of the storage name
|
|
field_name = field.name.lstrip('_')
|
|
if field_name not in cli_plugin_args:
|
|
continue
|
|
if field.type in (str, Optional[str]):
|
|
plugin_dtype_options = DEFAULT_PLUGIN_DTYPE_OPTIONS
|
|
if field_name in PLUGIN_DTYPE_OPTIONS_MAP:
|
|
plugin_dtype_options = PLUGIN_DTYPE_OPTIONS_MAP[field_name]
|
|
parser.add_argument(
|
|
"--" + field_name,
|
|
type=str,
|
|
default=field.default if field.default else "disable",
|
|
choices=[x if x else "disable" for x in plugin_dtype_options],
|
|
help=f"Whether to enable/disable {field_name} and the dtype.")
|
|
elif field.type == bool:
|
|
parser.add_argument(
|
|
"--" + field_name,
|
|
type=str,
|
|
default="enable" if field.default else "disable",
|
|
choices=["enable", "disable"],
|
|
help=f"Whether to enable/disable {field_name}.")
|
|
else:
|
|
parser.add_argument("--" + field_name,
|
|
type=field.type,
|
|
default=field.default,
|
|
help=f"{field_name}.")
|
|
return parser
|
|
|
|
|
|
class CustomAllReduceHelper:
|
|
"""
|
|
Globally visible class to help usage of custom_all_reduce plugin.
|
|
Provides the following utilities:
|
|
|
|
gen_id: int
|
|
Used for synchronization with custom kernels. Plugins instances MUST have the same
|
|
id across GPUs. I.e.: GPU#0's allreduce after MLP at layer i must have the same id as
|
|
GPU#1, GPU#2... Also, ids MUST be unique per model. There should not be two allreduce instances
|
|
in GPU#0 that have the same id.
|
|
|
|
workspace: Tensor
|
|
When using CUSTOM or AUTO mode, a tensor containing pointers to memory
|
|
visible to all GPUs. It should be 3 pointers per TP rank -
|
|
ptr to data buffer, ptr to barriers in, ptr to barriers out.
|
|
It must be initialized using IpcMemory class.
|
|
|
|
Usage:
|
|
- Use `init_all_reduce_helper` to reset the id counter. This must be done in main model class.
|
|
- Set custom_all_reduce_helper.workspace with the required tensor.
|
|
Then, each instance of allreduce will reference that tensor automatically.
|
|
"""
|
|
POINTERS_PER_RANK = 4
|
|
|
|
def __init__(self) -> None:
|
|
self.current_id: int = 1
|
|
self.workspace: Optional[Tensor] = None
|
|
|
|
def gen_id(self) -> int:
|
|
result = self.current_id
|
|
self.current_id += 1
|
|
return result
|
|
|
|
def set_workspace_tensor(self,
|
|
mapping: Mapping,
|
|
num_profiles: Optional[int] = None):
|
|
from ..functional import Tensor
|
|
workspace_size = self.POINTERS_PER_RANK * mapping.tp_size
|
|
|
|
dim_range = None
|
|
if num_profiles is not None:
|
|
dim_range = OrderedDict([('all_reduce_size',
|
|
[workspace_size] * num_profiles)])
|
|
|
|
self.workspace = Tensor(
|
|
name='all_reduce_workspace',
|
|
dtype=trt.int64,
|
|
shape=[workspace_size],
|
|
dim_range=dim_range,
|
|
)
|
|
|
|
@staticmethod
|
|
def max_workspace_size_auto(tp_size: int) -> int:
|
|
if tp_size <= 2:
|
|
return 16_000_000
|
|
return 8_000_000
|
|
|
|
@staticmethod
|
|
def allocate_workspace(mapping: Mapping,
|
|
size: int) -> Tuple[List[IpcMemory], "torch.tensor"]:
|
|
import torch
|
|
ipc_buffers_ping = IpcMemory(mapping, size * mapping.tp_size)
|
|
ipc_buffers_pong = IpcMemory(mapping, size * mapping.tp_size)
|
|
ipc_barriers_in = IpcMemory(
|
|
mapping, IpcMemory.IPC_BARRIERS_SIZE_PER_GPU * mapping.tp_size * 2)
|
|
ipc_barriers_out = IpcMemory(
|
|
mapping, IpcMemory.IPC_BARRIERS_SIZE_PER_GPU * mapping.tp_size * 2)
|
|
buffers = [
|
|
ipc_buffers_ping,
|
|
ipc_buffers_pong,
|
|
ipc_barriers_in,
|
|
ipc_barriers_out,
|
|
]
|
|
|
|
return buffers, torch.tensor(
|
|
ipc_buffers_ping.serialize() + ipc_buffers_pong.serialize() +
|
|
ipc_barriers_in.serialize() + ipc_barriers_out.serialize(),
|
|
dtype=torch.int64,
|
|
device="cpu")
|
|
|
|
|
|
custom_all_reduce_helper = None
|
|
|
|
|
|
def init_all_reduce_helper():
|
|
global custom_all_reduce_helper
|
|
custom_all_reduce_helper = CustomAllReduceHelper()
|
|
|
|
|
|
def current_all_reduce_helper():
|
|
global custom_all_reduce_helper
|
|
assert custom_all_reduce_helper is not None, "You must call `init_all_reduce_helper` first"
|
|
return custom_all_reduce_helper
|