mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* feat: trtllm-gen fp4 GEMM Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> * Clean up Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> * Remove incorrect header Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> * Reviewer comment Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com> --------- Signed-off-by: Dom Brown <3886319+DomBrown@users.noreply.github.com>
106 lines
3.4 KiB
C++
106 lines
3.4 KiB
C++
/*
|
|
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <vector>
|
|
|
|
#include "KernelRunner.h"
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "trtllmGen_export/GemmInterface.h"
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
TrtllmGenGemmRunner::TrtllmGenGemmRunner(tg::Dtype eltType, tg::Dtype outputType)
|
|
: mEltType(eltType)
|
|
, mOutputType(outputType)
|
|
{
|
|
// Select a GEMM kernel config to use
|
|
auto const gemm = gemm::GemmInterface();
|
|
auto const configs = gemm.getGemmConfigs();
|
|
|
|
std::vector<int32_t> selectedIndex;
|
|
|
|
for (size_t i = 0; i < gemm.getNumGemmConfigs(); ++i)
|
|
{
|
|
auto const options = configs[i].mOptions;
|
|
|
|
// When we include low-latency kernels we can set transposeMmaOutput via constructor
|
|
if (options.mDtypeElt == eltType && options.mDtypeC == outputType && !options.mTransposeMmaOutput)
|
|
{
|
|
selectedIndex.push_back(i);
|
|
}
|
|
}
|
|
|
|
TLLM_CHECK_WITH_INFO(selectedIndex.size() != 0, "No kernel found for the given output type");
|
|
TLLM_CHECK_WITH_INFO(selectedIndex.size() == 1, "Multiple kernels found for the given output type");
|
|
|
|
mGemmConfig = &configs[selectedIndex[0]];
|
|
}
|
|
|
|
size_t TrtllmGenGemmRunner::getWorkspaceSizeInBytes(
|
|
int32_t m, int32_t n, int32_t k, tg::Dtype eltType, tg::Dtype outputType) const
|
|
{
|
|
gemm::GemmData gemmData;
|
|
gemmData.mProblemDimensions.mM = m;
|
|
gemmData.mProblemDimensions.mN = n;
|
|
gemmData.mProblemDimensions.mK = k;
|
|
|
|
auto gemm = gemm::GemmInterface();
|
|
|
|
return gemm.getWorkspaceSizeInBytes(*mGemmConfig, gemmData);
|
|
}
|
|
|
|
void TrtllmGenGemmRunner::run(int32_t m, int32_t n, int32_t k, void const* a, float const* aScale, void const* b,
|
|
float const* bScale, void* c, float* cScale, void* workspace, CUstream stream, int device)
|
|
{
|
|
auto gemm = gemm::GemmInterface();
|
|
|
|
gemm::GemmData gemmData;
|
|
|
|
// Dims
|
|
gemmData.mProblemDimensions.mM = m;
|
|
gemmData.mProblemDimensions.mN = n;
|
|
gemmData.mProblemDimensions.mK = k;
|
|
|
|
// Inputs
|
|
gemmData.mInputBuffers.mPtrA = a;
|
|
gemmData.mInputBuffers.mPtrSfA = aScale;
|
|
gemmData.mInputBuffers.mPtrB = b;
|
|
gemmData.mInputBuffers.mPtrSfB = bScale;
|
|
gemmData.mInputBuffers.mPtrScaleC = cScale;
|
|
|
|
// Outputs
|
|
gemmData.mOutputBuffers.mPtrC = c;
|
|
|
|
auto isValidConfig = gemm.isValidConfig(*mGemmConfig, gemmData);
|
|
TLLM_CHECK_WITH_INFO(isValidConfig, "Invalid GEMM config selected!");
|
|
|
|
cudaDeviceProp deviceProperties;
|
|
cudaGetDeviceProperties(&deviceProperties, device);
|
|
|
|
// FIXME once we start using all-reduce in the epilogue of the gemm this can be moved elsewhere
|
|
gemm.runInitBeforeWorldSync(*mGemmConfig, gemmData, static_cast<void*>(stream));
|
|
|
|
auto const err = gemm.run(*mGemmConfig, workspace, gemmData, static_cast<void*>(stream), deviceProperties);
|
|
|
|
TLLM_CHECK_WITH_INFO(err == 0, "Error occurred when running GEMM!");
|
|
}
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|