mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Accuracy test improvement (Part 2) Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> * WAR OOM Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> update Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> * fix Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> * fix Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> --------- Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
816 lines
29 KiB
Python
816 lines
29 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Module test_mistral test mistral examples."""
|
|
import os
|
|
import platform
|
|
import uuid
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_summary_cmd, quantize_data,
|
|
test_multi_lora_support, venv_check_call,
|
|
venv_mpi_check_call)
|
|
from defs.conftest import (evaltool_mmlu_post_process,
|
|
evaltool_wikilingua_post_process, get_device_memory,
|
|
skip_post_blackwell, skip_pre_ada)
|
|
from defs.trt_test_alternative import check_call
|
|
from evaltool.constants import (EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT,
|
|
EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT,
|
|
EVALTOOL_MMLU_CONFIG, EVALTOOL_MMLU_RESULT_FILE,
|
|
EVALTOOL_WIKILINGUA_CONFIG,
|
|
EVALTOOL_WIKILINGUA_RESULT_FILE)
|
|
|
|
from tensorrt_llm import LLM, SamplingParams
|
|
from tensorrt_llm.llmapi import BuildConfig, CalibConfig, QuantAlgo, QuantConfig
|
|
|
|
|
|
@pytest.fixture(autouse=True, scope="module")
|
|
def mistral_example_root(llm_venv):
|
|
if platform.system() != "Windows":
|
|
# https://github.com/Dao-AILab/flash-attention/issues/345
|
|
# No wheel for flash-attn on windows and compilation fails locally.
|
|
llm_venv.run_cmd(
|
|
['-m', 'pip', 'install', '--upgrade', 'flash-attn==2.4.2'])
|
|
|
|
|
|
@pytest.mark.parametrize("run_type", [
|
|
'inference', 'summarization', 'summarization_long',
|
|
'chunked_summarization_long'
|
|
])
|
|
@pytest.mark.parametrize("max_attention_window", [4096],
|
|
ids=['max_attention_window_size_4096'])
|
|
@pytest.mark.parametrize("data_type", ['float16'])
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mistral_v1_1gpu(run_type, data_type, llama_example_root,
|
|
max_attention_window, llm_mistral_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir):
|
|
|
|
print("Build engines...")
|
|
if run_type == "inference":
|
|
model_name = 'mistral-{}'.format(run_type)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--max_beam_width=4",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--max_seq_len=2048",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run inference...")
|
|
venv_check_call(llm_venv, [
|
|
f"{llama_example_root}/../run.py",
|
|
"--max_output_len=512",
|
|
f"--tokenizer_dir={llm_mistral_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}",
|
|
])
|
|
|
|
elif run_type == "summarization":
|
|
model_name = 'mistral-{}'.format(run_type)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--max_beam_width=4",
|
|
f"--max_batch_size={1}",
|
|
f"--max_input_len={1024}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--context_fmha=enable",
|
|
"--max_seq_len=2048",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = [
|
|
f"{llama_example_root}/../summarize.py",
|
|
"--test_trt_llm",
|
|
"--hf_model_dir",
|
|
f"{llm_mistral_model_root}",
|
|
"--data_type",
|
|
"fp16",
|
|
f"--engine_dir={engine_dir}",
|
|
"--tensorrt_llm_rouge1_threshold",
|
|
"22",
|
|
"--check_accuracy",
|
|
f"--dataset_dir={llm_datasets_root}",
|
|
f"--rouge_dir={llm_rouge_root}",
|
|
f"--max_ite=100",
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
print("Run summarize with beam_width = 2...")
|
|
summary_cmd = [
|
|
f"{llama_example_root}/../summarize.py",
|
|
"--test_trt_llm",
|
|
"--hf_model_dir",
|
|
f"{llm_mistral_model_root}",
|
|
"--data_type",
|
|
"fp16",
|
|
"--num_beams",
|
|
"2",
|
|
f"--engine_dir={engine_dir}",
|
|
"--tensorrt_llm_rouge1_threshold",
|
|
"22",
|
|
"--check_accuracy",
|
|
f"--dataset_dir={llm_datasets_root}",
|
|
f"--rouge_dir={llm_rouge_root}",
|
|
f"--max_ite=100",
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
print("Run summarize with beam_width = 4...")
|
|
summary_cmd = [
|
|
f"{llama_example_root}/../summarize.py",
|
|
"--test_trt_llm",
|
|
"--hf_model_dir",
|
|
f"{llm_mistral_model_root}",
|
|
"--data_type",
|
|
"fp16",
|
|
"--num_beams",
|
|
"4",
|
|
f"--engine_dir={engine_dir}",
|
|
"--tensorrt_llm_rouge1_threshold",
|
|
"22",
|
|
"--check_accuracy",
|
|
f"--dataset_dir={llm_datasets_root}",
|
|
f"--rouge_dir={llm_rouge_root}",
|
|
f"--max_ite=100",
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
elif run_type == "summarization_long":
|
|
model_name = 'mistral-{}'.format(run_type)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_input_len",
|
|
"6400",
|
|
f"--max_batch_size={1}",
|
|
"--max_seq_len",
|
|
"6528",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--context_fmha=enable",
|
|
"--use_paged_context_fmha=disable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run long context summarize...")
|
|
# using shorter input length since A30 doesn't have enough device memory.
|
|
summary_cmd = [
|
|
f"{llama_example_root}/summarize_long.py",
|
|
"--test_trt_llm",
|
|
"--test_hf",
|
|
"--hf_model_location",
|
|
f"{llm_mistral_model_root}",
|
|
"--data_type",
|
|
"fp16",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}",
|
|
"--max_ite",
|
|
"3",
|
|
"--max_input_len",
|
|
"6400",
|
|
"--tensorrt_llm_rouge1_threshold",
|
|
"90",
|
|
"--check_accuracy",
|
|
]
|
|
# https://nvbugs/4658787
|
|
# WAR before summarize_long.py can work offline
|
|
env = {"HF_DATASETS_OFFLINE": "0"}
|
|
venv_check_call(llm_venv, summary_cmd, env=env)
|
|
|
|
# multi block + sliding window attention tests.
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_input_len",
|
|
"6400",
|
|
"--max_seq_len",
|
|
"6528",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--use_paged_context_fmha=disable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run long context summarize with multi_block_mode enabled...")
|
|
# using shorter input length since A30 doesn't have enough device memory.
|
|
summary_cmd = [
|
|
f"{llama_example_root}/summarize_long.py", "--test_trt_llm",
|
|
"--test_hf", "--hf_model_location", f"{llm_mistral_model_root}",
|
|
"--data_type", "fp16", f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}", "--max_ite",
|
|
"3", "--max_input_len", "6400", "--tensorrt_llm_rouge1_threshold",
|
|
"90", "--check_accuracy"
|
|
]
|
|
venv_check_call(llm_venv, summary_cmd, env=env)
|
|
|
|
elif run_type == "chunked_summarization_long":
|
|
model_name = 'mistral-{}'.format(run_type)
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_input_len",
|
|
"6400",
|
|
"--max_num_tokens=2048",
|
|
"--use_paged_context_fmha=enable",
|
|
f"--max_batch_size={1}",
|
|
"--max_seq_len",
|
|
"6528",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--context_fmha=enable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run long context summarize...")
|
|
summary_cmd = [
|
|
f"{llama_example_root}/../summarize.py",
|
|
"--eval_task=summarize_long", "--test_trt_llm", "--test_hf",
|
|
"--hf_model_dir", f"{llm_mistral_model_root}", "--data_type",
|
|
"fp16", f"--engine_dir={engine_dir}",
|
|
f"--max_attention_window_size={max_attention_window}",
|
|
"--max_input_length", "6400", "--tensorrt_llm_rouge1_threshold",
|
|
"21", "--check_accuracy", "--enable_chunked_context"
|
|
]
|
|
# https://nvbugs/4658787
|
|
# WAR before summarize_long.py can work offline
|
|
env = {"HF_DATASETS_OFFLINE": "0"}
|
|
venv_check_call(llm_venv, summary_cmd, env=env)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mistral_v1_smooth_quant_4gpus(llama_example_root,
|
|
llm_mistral_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir):
|
|
"Run smooth quant test on 4 gpus"
|
|
data_type = "float16"
|
|
# --per_token & --per_channel are mandatory
|
|
model_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="mistral-sq",
|
|
model_path=llm_mistral_model_root,
|
|
tp_size=4,
|
|
pp_size=1,
|
|
smoothquant=0.5,
|
|
per_channel=True,
|
|
per_token=True,
|
|
data_type=data_type,
|
|
calib_dataset=f"{llm_datasets_root}/ccdv/cnn_dailymail")
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--max_beam_width=4",
|
|
"--workers=4",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=llm_mistral_model_root,
|
|
data_type="fp16",
|
|
num_beams=4,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=23,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.parametrize("run_type", ['inference', 'summarization'])
|
|
@pytest.mark.parametrize("mistral_nemo_model_root", ['Mistral-Nemo-12b-Base'],
|
|
indirect=True)
|
|
def test_llm_mistral_nemo_fp8_quantization_1gpu(mistral_nemo_model_root,
|
|
llama_example_root,
|
|
run_type,
|
|
llm_datasets_root,
|
|
llm_rouge_root,
|
|
llm_venv,
|
|
cmodel_dir,
|
|
engine_dir,
|
|
qcache_dir,
|
|
data_type='bfloat16',
|
|
num_beams=1):
|
|
if num_beams > 2 and get_device_memory() < 80000:
|
|
pytest.skip("device memory is insufficient.")
|
|
|
|
# Quantize HF llama checkpoint into FP8 format
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=mistral_nemo_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype=data_type,
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
calib_size=512,
|
|
kv_cache_dtype="fp8")
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--remove_input_padding=enable",
|
|
f"--max_beam_width={num_beams}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
if run_type == "inference":
|
|
print("Run inference...")
|
|
venv_check_call(llm_venv, [
|
|
f"{llama_example_root}/../run.py",
|
|
"--max_output_len=50",
|
|
f"--tokenizer_dir={mistral_nemo_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--num_beams={num_beams}",
|
|
])
|
|
elif run_type == "summarization":
|
|
print("Run summarize...")
|
|
tensorrt_llm_rouge1_threshold = 24
|
|
|
|
summary_cmd = generate_summary_cmd(
|
|
llama_example_root,
|
|
hf_model_dir=mistral_nemo_model_root,
|
|
data_type=data_type,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=tensorrt_llm_rouge1_threshold,
|
|
num_beams=num_beams,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.parametrize("mistral_nemo_minitron_model_root",
|
|
['Mistral-NeMo-Minitron-8B-Instruct'],
|
|
indirect=True)
|
|
def test_llm_mistral_nemo_minitron_fp8_quantization(
|
|
mistral_nemo_minitron_model_root,
|
|
llama_example_root,
|
|
llm_datasets_root,
|
|
llm_rouge_root,
|
|
llm_venv,
|
|
engine_dir,
|
|
qcache_dir,
|
|
qformat='fp8',
|
|
num_beams=1):
|
|
"Run Mistral Nemo Minitron 8B quantization."
|
|
data_type = "bfloat16"
|
|
tp_size, pp_size = 1, 1
|
|
world_size = tp_size * pp_size
|
|
|
|
print("Quantizing engine...")
|
|
# Quantize HF llama checkpoint into FP8 format.
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=mistral_nemo_minitron_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype=data_type,
|
|
qformat=qformat,
|
|
quantize_dir=qcache_dir,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
calib_size=512)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
f"--moe_plugin={data_type}",
|
|
f"--max_beam_width={num_beams}",
|
|
"--context_fmha=enable",
|
|
f"--workers={world_size}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
tensorrt_llm_rouge1_threshold = 22.0
|
|
|
|
summary_cmd = generate_summary_cmd(
|
|
llama_example_root,
|
|
hf_model_dir=mistral_nemo_minitron_model_root,
|
|
data_type=data_type,
|
|
num_beams=num_beams,
|
|
tensorrt_llm_rouge1_threshold=tensorrt_llm_rouge1_threshold,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(8)
|
|
@pytest.mark.parametrize("num_beams", [1, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("qformat", ['fp8'])
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mistral_quantization_8gpus_summary(
|
|
llama_example_root, llm_mistral_model_root, llm_datasets_root,
|
|
llm_rouge_root, llm_venv, engine_dir, num_beams, qcache_dir, qformat):
|
|
"run mixtral fp8 on 2gpus"
|
|
data_type = "float16"
|
|
tp_size, pp_size = 4, 2
|
|
world_size = tp_size * pp_size
|
|
|
|
print("Quantizing engine...")
|
|
# Quantize HF llama checkpoint into FP8 format
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mistral_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype=data_type,
|
|
qformat=qformat,
|
|
quantize_dir=qcache_dir,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
calib_size=32)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
f"--moe_plugin={data_type}",
|
|
f"--max_beam_width={num_beams}",
|
|
"--context_fmha=enable",
|
|
f"--workers={world_size}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
tensorrt_llm_rouge1_threshold = 22.0
|
|
|
|
summary_cmd = generate_summary_cmd(
|
|
llama_example_root,
|
|
hf_model_dir=llm_mistral_model_root,
|
|
data_type="fp16",
|
|
num_beams=num_beams,
|
|
tensorrt_llm_rouge1_threshold=tensorrt_llm_rouge1_threshold,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'],
|
|
indirect=True)
|
|
def test_mistal_evaltool(llama_example_root, llm_mistral_model_root, llm_venv,
|
|
cmodel_dir, engine_dir, evaltool_root):
|
|
|
|
print("Build engines...")
|
|
|
|
data_type = "float16"
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model='mistral',
|
|
model_path=llm_mistral_model_root,
|
|
data_type=data_type)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--gather_context_logits",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=5000",
|
|
"--max_seq_len=7048",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Lm evaluation harness")
|
|
|
|
# start inference server
|
|
start_inference_server = [
|
|
EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT, "-e", engine_dir, "-t",
|
|
llm_mistral_model_root, "-d", evaltool_root, "-m", "256"
|
|
]
|
|
check_call(" ".join(start_inference_server), shell=True)
|
|
|
|
task_list = ['mmlu', 'wikilingua']
|
|
|
|
try:
|
|
for task in task_list:
|
|
project_id = str(uuid.uuid4())
|
|
if task == "wikilingua":
|
|
config_file = EVALTOOL_WIKILINGUA_CONFIG
|
|
result_file = EVALTOOL_WIKILINGUA_RESULT_FILE
|
|
|
|
if task == "mmlu":
|
|
config_file = EVALTOOL_MMLU_CONFIG
|
|
result_file = EVALTOOL_MMLU_RESULT_FILE
|
|
|
|
model_name = os.path.basename(llm_mistral_model_root)
|
|
# Update config dynamically
|
|
import yaml
|
|
with open(config_file, 'r') as f:
|
|
lm_eval_config = yaml.safe_load(f)
|
|
lm_eval_config['model']['llm_name'] = model_name
|
|
lm_eval_config['model'][
|
|
'tokenizer_path'] = llm_mistral_model_root
|
|
|
|
config_file = os.path.join(llm_venv.get_working_directory(),
|
|
"lm_eval_config.yaml")
|
|
with open(config_file, 'w') as f:
|
|
yaml.dump(lm_eval_config, f)
|
|
|
|
# launch evaluation
|
|
run_cmd = [
|
|
f"cd {evaltool_root}",
|
|
"&&",
|
|
"source .venv/bin/activate",
|
|
"&&",
|
|
"python3",
|
|
"evaltool/interfaces/cli/main.py",
|
|
"project",
|
|
"launch",
|
|
f"--eval_project_config_file '{config_file}'",
|
|
"--infra_name local",
|
|
f"--output_dir '{llm_venv.get_working_directory()}'",
|
|
f"--project_id {project_id}",
|
|
]
|
|
check_call(" ".join(run_cmd), shell=True, executable="/bin/bash")
|
|
|
|
# process result
|
|
result_path = f"{llm_venv.get_working_directory()}/{project_id}/{result_file}"
|
|
check_call(f"cat {result_path}", shell=True)
|
|
|
|
if task == 'mmlu':
|
|
evaltool_mmlu_post_process(result_path, 0.6408, 0.006)
|
|
if task == 'wikilingua':
|
|
evaltool_wikilingua_post_process(result_path, 0.2443, 0.003)
|
|
|
|
finally:
|
|
# stop the server
|
|
check_call(f"{EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT}", shell=True)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['komt-mistral-7b-v1'],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("llm_lora_model_root", ['komt-mistral-7b-v1-lora'],
|
|
indirect=True)
|
|
def test_llm_mistral_lora_1gpu(llama_example_root, llm_mistral_model_root,
|
|
llm_datasets_root, llm_venv, engine_dir,
|
|
llm_lora_model_root, qcache_dir):
|
|
"run mistral lora test on 1gpu"
|
|
print("Quantization...")
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mistral_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype="float16",
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
calib_size=512,
|
|
kv_cache_dtype="fp8")
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--lora_dir={llm_lora_model_root}",
|
|
"--lora_plugin=auto",
|
|
"--gemm_plugin=auto",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=32256",
|
|
"--max_seq_len=33280",
|
|
"--use_paged_context_fmha=enable",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
input_text = "[INST]오늘은 날씨가 아주 좋다 내가 공원에 갔을 때 [/INST]"
|
|
|
|
run_cmd = [
|
|
f"{llama_example_root}/../run.py",
|
|
f"--input_text={input_text}",
|
|
f"--tokenizer_dir={llm_mistral_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
"--max_output_len=1024",
|
|
"--max_attention_window_size=4096",
|
|
"--lora_task_uids=0",
|
|
"--temperature=0.8",
|
|
"--top_p=0.8",
|
|
"--top_k=100",
|
|
"--random_seed=0",
|
|
]
|
|
|
|
venv_check_call(llm_venv, run_cmd)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("mistral_nemo_minitron_model_root",
|
|
['Mistral-NeMo-Minitron-8B-Instruct'],
|
|
indirect=True)
|
|
def test_mistral_nemo_minitron_fp8_with_bf16_lora(
|
|
llama_example_root,
|
|
mistral_nemo_minitron_model_root,
|
|
llm_datasets_root,
|
|
qcache_dir,
|
|
llm_rouge_root,
|
|
llm_venv,
|
|
engine_dir,
|
|
num_beams=1,
|
|
):
|
|
"Run Mistral Nemo Minitron 8B with multiple pseudo LoRAs."
|
|
|
|
# Quantize the base model to fp8.
|
|
qmodel_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=mistral_nemo_minitron_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype="bfloat16",
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
calib_size=32,
|
|
kv_cache_dtype="fp8")
|
|
|
|
test_multi_lora_support(
|
|
hf_model_dir=mistral_nemo_minitron_model_root,
|
|
tllm_ckpt_dir=qmodel_dir,
|
|
engine_dir=engine_dir,
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
num_loras=2,
|
|
lora_rank=8,
|
|
target_hf_modules=["q_proj", "k_proj", "v_proj"],
|
|
target_trtllm_modules=["attn_q", "attn_k", "attn_v"],
|
|
zero_lora_weights=True,
|
|
)
|
|
|
|
|
|
@skip_post_blackwell
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("quant", ['int4', 'int4_awq', 'int8_awq'])
|
|
@pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.3'],
|
|
indirect=True)
|
|
def test_llm_mistral_quantization_4gpus_llmapi(llama_example_root,
|
|
llm_mistral_model_root,
|
|
llm_datasets_root, llm_venv,
|
|
engine_dir, quant,
|
|
mmlu_dataset_root):
|
|
"run mixtral weight only int4/int8 on 4gpus"
|
|
|
|
tp_size = 4
|
|
|
|
if quant == 'int4':
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A16)
|
|
elif quant == 'int4_awq':
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ)
|
|
elif quant == 'int8_awq':
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A8_AWQ)
|
|
|
|
calib_config = CalibConfig(
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
calib_batches=512,
|
|
calib_max_seq_length=2048)
|
|
|
|
build_config = BuildConfig()
|
|
build_config.max_batch_size = 1
|
|
build_config.max_input_len = 1900
|
|
build_config.plugin_config.context_fmha = True
|
|
build_config.plugin_config.paged_kv_cache = True
|
|
build_config.plugin_config._use_paged_context_fmha = True
|
|
|
|
llm = LLM(model=llm_mistral_model_root,
|
|
auto_parallel_world_size=tp_size,
|
|
tensor_parallel_size=tp_size,
|
|
build_config=build_config,
|
|
quant_config=quant_config,
|
|
calib_config=calib_config)
|
|
|
|
llm.save(engine_dir)
|
|
|
|
prompt = "You are a friendly AI agent who can provide assistance to the customer regarding their recent order."
|
|
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=128)
|
|
|
|
with llm:
|
|
output = llm.generate(prompt, sampling_params)
|
|
print(
|
|
f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
|
|
)
|
|
# Assert that output contains "Assistant" or "AI agent"
|
|
generated_text = output.outputs[0].text.strip()
|
|
assert ("Assistant" in generated_text) or (
|
|
"AI agent" in generated_text
|
|
), "Generated text should start with either 'Assistant' or 'AI agent'"
|
|
|
|
del llm
|
|
|
|
threshold = 55 if 'int4' in quant else 60
|
|
|
|
mmlu_cmd = [
|
|
f"{llama_example_root}/../mmlu_llmapi.py",
|
|
f"--data_dir={mmlu_dataset_root}",
|
|
f"--hf_model_dir={llm_mistral_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
"--backend=tensorrt",
|
|
"--check_accuracy",
|
|
f"--accuracy_threshold={threshold}",
|
|
f"--tp_size={tp_size}",
|
|
]
|
|
|
|
venv_check_call(llm_venv, mmlu_cmd)
|