mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
235 lines
8.2 KiB
Plaintext
235 lines
8.2 KiB
Plaintext
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/common.h"
|
|
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv/utility.h"
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, bool Zero, bool Bias,
|
|
int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
|
|
struct WeightOnlyBatchedGemvKernelLauncher
|
|
{
|
|
static void run(const WeightOnlyParams& params, cudaStream_t stream);
|
|
};
|
|
|
|
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, template <typename T> class ActOp, int N_PER_BLOCK,
|
|
int BATCH, int BLOCK_SIZE>
|
|
void select_zero_bias(const WeightOnlyParams& params, cudaStream_t stream)
|
|
{
|
|
if (params.zeros && params.bias)
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, true, true, N_PER_BLOCK, BATCH,
|
|
BLOCK_SIZE>::run(params, stream);
|
|
}
|
|
else if (params.zeros && !params.bias)
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, true, false, N_PER_BLOCK, BATCH,
|
|
BLOCK_SIZE>::run(params, stream);
|
|
}
|
|
else if (!params.zeros && params.bias)
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, false, true, N_PER_BLOCK, BATCH,
|
|
BLOCK_SIZE>::run(params, stream);
|
|
}
|
|
else
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<QType, WeightOnlyFlag, ActOp, false, false, N_PER_BLOCK, BATCH,
|
|
BLOCK_SIZE>::run(params, stream);
|
|
}
|
|
}
|
|
|
|
template <WeightOnlyQuantType QType, typename WeightOnlyFlag, int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
|
|
void select_activation(const WeightOnlyParams& params, cudaStream_t stream)
|
|
{
|
|
switch (params.act_func_type)
|
|
{
|
|
// Currently, activation function is not called in the plugin
|
|
#if 0
|
|
case WeightOnlyActivationFunctionType::Gelu:
|
|
{
|
|
select_zero_bias<QType, WeightOnlyFlag, GeluActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
break;
|
|
}
|
|
case WeightOnlyActivationFunctionType::Relu:
|
|
{
|
|
select_zero_bias<QType, WeightOnlyFlag, ReluActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
break;
|
|
}
|
|
#endif
|
|
case WeightOnlyActivationFunctionType::Identity:
|
|
{
|
|
select_zero_bias<QType, WeightOnlyFlag, IdentityActivation, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
throw std::runtime_error("Use unsupported activation");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename WeightOnlyFlag, int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
|
|
void select_quant_type(const WeightOnlyParams& params, cudaStream_t stream)
|
|
{
|
|
if (params.quant_type == WeightOnlyQuantType::Int4b)
|
|
{
|
|
select_activation<WeightOnlyQuantType::Int4b, WeightOnlyFlag, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
}
|
|
else if (params.quant_type == WeightOnlyQuantType::Int8b)
|
|
{
|
|
select_activation<WeightOnlyQuantType::Int8b, WeightOnlyFlag, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error("Unknown QuantType");
|
|
}
|
|
}
|
|
|
|
template <int N_PER_BLOCK, int BATCH, int BLOCK_SIZE>
|
|
void select_groupwise_weight_only(const WeightOnlyParams& params, cudaStream_t stream)
|
|
{
|
|
if (params.weight_only_type == WeightOnlyType::GroupWise && params.group_size == 64)
|
|
{
|
|
select_quant_type<WeightOnlyGroupWise<64>, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
}
|
|
else if (params.weight_only_type == WeightOnlyType::GroupWise && params.group_size == 128)
|
|
{
|
|
select_quant_type<WeightOnlyGroupWise<128>, N_PER_BLOCK, BATCH, BLOCK_SIZE>(params, stream);
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error("Only support groupwise weight only for gs=64/128");
|
|
}
|
|
}
|
|
|
|
void weight_only_batched_gemv_launcher(const WeightOnlyParams& params, cudaStream_t stream)
|
|
{
|
|
assert(params.act_func_type == WeightOnlyActivationFunctionType::Identity);
|
|
assert(params.weight_only_type == WeightOnlyType::GroupWise
|
|
|| (params.weight_only_type == WeightOnlyType::PerChannel && params.bias == nullptr
|
|
&& params.zeros == nullptr));
|
|
if (params.weight_only_type == WeightOnlyType::PerChannel)
|
|
{
|
|
if (params.quant_type == WeightOnlyQuantType::Int4b)
|
|
{
|
|
switch (params.m)
|
|
{
|
|
case 1:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 1, 1, 192>::run(params, stream);
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 2, 2, 128>::run(params, stream);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 2, 3, 256>::run(params, stream);
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int4b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 4, 4, 256>::run(params, stream);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (params.quant_type == WeightOnlyQuantType::Int8b)
|
|
{
|
|
switch (params.m)
|
|
{
|
|
case 1:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 2, 1, 256>::run(params, stream);
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 2, 2, 256>::run(params, stream);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 2, 3, 256>::run(params, stream);
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
WeightOnlyBatchedGemvKernelLauncher<WeightOnlyQuantType::Int8b, WeightOnlyPerChannel,
|
|
IdentityActivation, false, false, 2, 4, 256>::run(params, stream);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (params.weight_only_type == WeightOnlyType::GroupWise)
|
|
{
|
|
switch (params.m)
|
|
{
|
|
case 1:
|
|
{
|
|
select_groupwise_weight_only<2, 1, 256>(params, stream);
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
select_groupwise_weight_only<2, 2, 256>(params, stream);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
select_groupwise_weight_only<2, 3, 128>(params, stream);
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
select_groupwise_weight_only<2, 4, 128>(params, stream);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
throw std::runtime_error("Weight only cuda kernel only supported bs <= 4");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|