TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_medusa_output.py
Kaiyu Xie 0f041b7b57
Update TensorRT-LLM (#1098)
* Update TensorRT-LLM

* update submodule

* Remove unused binaries
2024-02-18 15:48:08 +08:00

70 lines
2.7 KiB
Python
Executable File

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
from pathlib import Path
import run
def generate_output(engine: str, output_name: str, max_output_len: int = 8):
model = 'vicuna-7b-v1.3'
resources_dir = Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
hf_dir = models_dir / model
tp_pp_dir = 'tp1-pp1-gpu/'
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_dir
data_dir = resources_dir / 'data'
input_file = data_dir / 'input_tokens.npy'
model_data_dir = data_dir / model
output_dir = model_data_dir / 'sampling'
output_name += '_tp1_pp1'
args = run.parse_arguments([
'--engine_dir',
str(engine_dir), '--input_file',
str(input_file), '--tokenizer_dir',
str(hf_dir), '--output_npy',
str(output_dir / (output_name + '.npy')), '--output_csv',
str(output_dir / (output_name + '.csv')), '--max_output_len',
str(max_output_len), '--use_py_session',
'--medusa_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]',
'--temperature', '0.0'
])
run.main(args)
def generate_outputs():
print(f'Generating outputs for Medusa FP16')
generate_output(engine='fp16-plugin-packed-paged',
output_name='output_tokens_fp16_plugin_packed_paged')
if __name__ == '__main__':
parser = _arg.ArgumentParser()
parser.add_argument(
"--only_multi_gpu",
action="store_true",
help="Generate data with Pipeline and Tensor Parallelism")
args = parser.parse_args()
generate_outputs()
print("Done")