mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
71 lines
2.5 KiB
Python
71 lines
2.5 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
|
|
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm.functional import rms_norm
|
|
|
|
|
|
class TestPrecisionControl(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_precision_control(self):
|
|
# test data
|
|
test_shape = [2, 5, 10, 10]
|
|
dtype = 'float32'
|
|
x_data = torch.randn(*test_shape)
|
|
m = LlamaRMSNorm(test_shape[-1]) # LlamaRMSNorm only supports last dim
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = rms_norm(x,
|
|
test_shape[-1],
|
|
weight=tensorrt_llm.constant(
|
|
m.weight.detach().cpu().numpy()))
|
|
output = output.trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork(
|
|
(builder.trt_builder, net.trt_network),
|
|
config=CreateConfig(precision_constraints='obey'))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
# pytorch run
|
|
with torch.no_grad():
|
|
ref = m(x_data)
|
|
|
|
# compare diff
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-6)
|